The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more d...The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity.展开更多
Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline tra...Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline transportation of backfill slurry were investigated. The results show that the backfill capability of the backfill system should be higher than 74.4 m3/h according to the mining production and backfill times in the mine; the minimum velocity (critical velocity) and practical working velocity of the backfill slurry are 1.44 and 3.82 m/s, respectively. Various formulae give the maximum ratio of total length to vertical height of pipeline (L/H ratio) of the backfill system of 5.4, and then the reliability and capability of the system can be evaluated.展开更多
In the past, most of the studies for compressional velocities are based on experimental measurements, which lack the support of field data. The purpose of this study is to estimate the compressional velocities based o...In the past, most of the studies for compressional velocities are based on experimental measurements, which lack the support of field data. The purpose of this study is to estimate the compressional velocities based on well log data of delta front subfacies of Lower Tertiary ages of Ji-Dong oil field, China. At initial stage, we have chosen the well log parameters (effect factors) which strongly influence on compressional velocities and established a new modified equation for compressional velocities, which is based on these effect factors. Then Gardner, De-hua Han and this newly established equation were utilized to calculate the compressional velocities in each well. Finally, Least-square regression was carried out to check the fitting of each equation. Regression results clearly indicate that our purposed equation shows better fitting as compared to Gardner and De-hua Han equations.展开更多
Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two...Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.展开更多
The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field...The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field, the paper presents a flow field calculation method based on the optical flow algorithm. The motion of the point was calculated using the change in pixel intensity within two temporally adjacent frame images. The results show the high accuracy and resolution of the flow field at small displacement conditions.展开更多
In this study,the parameters of Gassmann equation based on fluid replacement theory are studied by measuring the acoustic velocity during the evaporation process of volcanic rocks in Nanpu area.The experimental data s...In this study,the parameters of Gassmann equation based on fluid replacement theory are studied by measuring the acoustic velocity during the evaporation process of volcanic rocks in Nanpu area.The experimental data show that with the decrease of porosity of tight volcanic rock,the acoustic velocity difference between dry and wet rock samples increases,which is conducive for the identification of gas bearing reservoirs with acoustic log data.The fluid bulk modulus distribution of volcanic rocks in the study area conforms to Brie model,and the value of empirical coefficient e is related to lithology.The experimental results show that there is a linear relationship between the P-wave transit time of dry and wet rock samples.Using porosity to calculate the acoustic transit time of saturated rock samples,and taking it into the experimental formula,we can get the P-wave transit time and bulk modulus of dry rock samples.According to the bulk modulus of mixed fluid,dry rock and rock matrix determined by experiments,the saturation of volcanic reservoir in Nanpu area is calculated by Gassmann equation,which is in good contrast with the conclusion of gas test.This study provides an experimental basis for quantitative evaluation of volcanic gas reservoirs using seismic and acoustic logging data.展开更多
Beating chamber is one of important components that support aero-engine rotors and research on oil droplet and oil film motions is an important part of bearing chamber lubrication and heat transfer design. Consid- eri...Beating chamber is one of important components that support aero-engine rotors and research on oil droplet and oil film motions is an important part of bearing chamber lubrication and heat transfer design. Consid- ering the pressure of sealing air is an important operating condition that affects the oil droplet and oil film mo- tions, the effect of sealing air pressure on airflow in bearing chamber is investigated in this paper firstly ; and then based on the air velocity and air/wall shear force, the oil droplet moving in core air, deposition of oil droplet im- pact on wall as well as velocity and thickness of oil film are analyzed secondly; the effect of sealing air pressure on oil droplet velocity and trajectory, deposition mass and momentum, as well as oil film velocity and thickness is discussed. The work presented in this paper is conducive to expose the oil/air two phase lubrication mechanism and has certain reference value to guide design of secondary air/oil system.展开更多
In the paper, we aim to show N-(2,4,6-trinitrophenyl)-1H-1,2,4-triazol-3-amine (HM-I) as explosive material that satisfies requirements of sensitivity and hydrolytically stability. The influence of nitro group substit...In the paper, we aim to show N-(2,4,6-trinitrophenyl)-1H-1,2,4-triazol-3-amine (HM-I) as explosive material that satisfies requirements of sensitivity and hydrolytically stability. The influence of nitro group substitutions on the thermal and chemical stability as well as the explosive performance of HM-I is also investigated. We found that nitro group substitution to the triazole ring of HM-I can significantly improve the properties of this new material. Only -NH2 substitution position (but not their number) in the core molecule is appropriate to increase the stability and improve explosive performances of HM-I.展开更多
At present,the measurement of the near wave field of ships mostly relies on shipborne radar.The commonly used shipborne radar is incoherent and cannot obtain information on wave surface velocity.Therefore,the mathemat...At present,the measurement of the near wave field of ships mostly relies on shipborne radar.The commonly used shipborne radar is incoherent and cannot obtain information on wave surface velocity.Therefore,the mathematical model of wave reconstruction is remarkably complex.As a new type of radar,coherent radar can obtain the radial velocity of the wave surface.Most wave surface reconstruction methods that use wave velocity are currently based on velocity potential.The difficulty of these methods lies in determining the initial value of the velocity integral.This paper proposes a wave surface reconstruction method based on an artificial boundary matrix.Numerical simulation data of regular and short-crest waves are used to verify the accuracy of this method.Simultaneously,the reconstruction stability under different wave velocity measurement errors is analyzed.The calculation results show that the proposed method can effectively realize the reconstruction of wave field.展开更多
A host of authors have proposed some theoretical and experimental formulas in hydromechanics concerning the calculation of the drag coefficient Cd of spherical bodies. But all of the existing Cd formulas hold true onl...A host of authors have proposed some theoretical and experimental formulas in hydromechanics concerning the calculation of the drag coefficient Cd of spherical bodies. But all of the existing Cd formulas hold true only at small Reynolds numbers and are restricted within certain flowing range.As regards the fall velocity ω of spherical bodies, there is yet no formula applicable to each flowing range and to a direct expression and calculation of the fall velocity ω.In view of these, from N-S equations, and meanwhile based on measured data and complicated calculations, the author has developed and proposed the following results:(1) The drag coefficient (2) The dimensionless fall velocity where Es, Ω* and constants etc. are indicated in detail in this paper.Through laborious calculation in lgRe<5 larger range, the verification proves that our results well agree with the measured data. And the leading features of formulas of this paper are: (1) simple in form, (2) convenient for general use, (3) preferable on the part of the precision and applicability.Finally, to introduce this process and to illustrate the temperature effects on the fall velocity ω, some examples are discussed in this paper.展开更多
文摘The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity.
基金Project(50490270) supported by the National Natural Science Foundation of China
文摘Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline transportation of backfill slurry were investigated. The results show that the backfill capability of the backfill system should be higher than 74.4 m3/h according to the mining production and backfill times in the mine; the minimum velocity (critical velocity) and practical working velocity of the backfill slurry are 1.44 and 3.82 m/s, respectively. Various formulae give the maximum ratio of total length to vertical height of pipeline (L/H ratio) of the backfill system of 5.4, and then the reliability and capability of the system can be evaluated.
文摘In the past, most of the studies for compressional velocities are based on experimental measurements, which lack the support of field data. The purpose of this study is to estimate the compressional velocities based on well log data of delta front subfacies of Lower Tertiary ages of Ji-Dong oil field, China. At initial stage, we have chosen the well log parameters (effect factors) which strongly influence on compressional velocities and established a new modified equation for compressional velocities, which is based on these effect factors. Then Gardner, De-hua Han and this newly established equation were utilized to calculate the compressional velocities in each well. Finally, Least-square regression was carried out to check the fitting of each equation. Regression results clearly indicate that our purposed equation shows better fitting as compared to Gardner and De-hua Han equations.
基金Project supported by the Talent Fund of the Ministry of Communication of China(No.95050508) the Fund of Western Communication of China(No.200332822047) the Key Science Fund of the Ministry of Communication of China(No.95060233)
文摘Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.
文摘The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field, the paper presents a flow field calculation method based on the optical flow algorithm. The motion of the point was calculated using the change in pixel intensity within two temporally adjacent frame images. The results show the high accuracy and resolution of the flow field at small displacement conditions.
文摘In this study,the parameters of Gassmann equation based on fluid replacement theory are studied by measuring the acoustic velocity during the evaporation process of volcanic rocks in Nanpu area.The experimental data show that with the decrease of porosity of tight volcanic rock,the acoustic velocity difference between dry and wet rock samples increases,which is conducive for the identification of gas bearing reservoirs with acoustic log data.The fluid bulk modulus distribution of volcanic rocks in the study area conforms to Brie model,and the value of empirical coefficient e is related to lithology.The experimental results show that there is a linear relationship between the P-wave transit time of dry and wet rock samples.Using porosity to calculate the acoustic transit time of saturated rock samples,and taking it into the experimental formula,we can get the P-wave transit time and bulk modulus of dry rock samples.According to the bulk modulus of mixed fluid,dry rock and rock matrix determined by experiments,the saturation of volcanic reservoir in Nanpu area is calculated by Gassmann equation,which is in good contrast with the conclusion of gas test.This study provides an experimental basis for quantitative evaluation of volcanic gas reservoirs using seismic and acoustic logging data.
基金supported by the Natural Science Foundation of China under Grant No.51275411
文摘Beating chamber is one of important components that support aero-engine rotors and research on oil droplet and oil film motions is an important part of bearing chamber lubrication and heat transfer design. Consid- ering the pressure of sealing air is an important operating condition that affects the oil droplet and oil film mo- tions, the effect of sealing air pressure on airflow in bearing chamber is investigated in this paper firstly ; and then based on the air velocity and air/wall shear force, the oil droplet moving in core air, deposition of oil droplet im- pact on wall as well as velocity and thickness of oil film are analyzed secondly; the effect of sealing air pressure on oil droplet velocity and trajectory, deposition mass and momentum, as well as oil film velocity and thickness is discussed. The work presented in this paper is conducive to expose the oil/air two phase lubrication mechanism and has certain reference value to guide design of secondary air/oil system.
基金the LMA scientific project“A theoretical and experimental investigations of new potentially explosive materials using quantum mechanical methods(NSPROG-I4)”.
文摘In the paper, we aim to show N-(2,4,6-trinitrophenyl)-1H-1,2,4-triazol-3-amine (HM-I) as explosive material that satisfies requirements of sensitivity and hydrolytically stability. The influence of nitro group substitutions on the thermal and chemical stability as well as the explosive performance of HM-I is also investigated. We found that nitro group substitution to the triazole ring of HM-I can significantly improve the properties of this new material. Only -NH2 substitution position (but not their number) in the core molecule is appropriate to increase the stability and improve explosive performances of HM-I.
基金Supported by the National Natural Science Foundation of China under Grant No.51809066.
文摘At present,the measurement of the near wave field of ships mostly relies on shipborne radar.The commonly used shipborne radar is incoherent and cannot obtain information on wave surface velocity.Therefore,the mathematical model of wave reconstruction is remarkably complex.As a new type of radar,coherent radar can obtain the radial velocity of the wave surface.Most wave surface reconstruction methods that use wave velocity are currently based on velocity potential.The difficulty of these methods lies in determining the initial value of the velocity integral.This paper proposes a wave surface reconstruction method based on an artificial boundary matrix.Numerical simulation data of regular and short-crest waves are used to verify the accuracy of this method.Simultaneously,the reconstruction stability under different wave velocity measurement errors is analyzed.The calculation results show that the proposed method can effectively realize the reconstruction of wave field.
文摘A host of authors have proposed some theoretical and experimental formulas in hydromechanics concerning the calculation of the drag coefficient Cd of spherical bodies. But all of the existing Cd formulas hold true only at small Reynolds numbers and are restricted within certain flowing range.As regards the fall velocity ω of spherical bodies, there is yet no formula applicable to each flowing range and to a direct expression and calculation of the fall velocity ω.In view of these, from N-S equations, and meanwhile based on measured data and complicated calculations, the author has developed and proposed the following results:(1) The drag coefficient (2) The dimensionless fall velocity where Es, Ω* and constants etc. are indicated in detail in this paper.Through laborious calculation in lgRe<5 larger range, the verification proves that our results well agree with the measured data. And the leading features of formulas of this paper are: (1) simple in form, (2) convenient for general use, (3) preferable on the part of the precision and applicability.Finally, to introduce this process and to illustrate the temperature effects on the fall velocity ω, some examples are discussed in this paper.