The Volume Source Boundary Point Method (VSBPM) is greatly improved so that it will speed up the VSBPM's solution of the acoustic radiation problem caused by the vibrating body. The fundamental solution provided b...The Volume Source Boundary Point Method (VSBPM) is greatly improved so that it will speed up the VSBPM's solution of the acoustic radiation problem caused by the vibrating body. The fundamental solution provided by Helmholtz equation is enforced in a weighted residual sense over a tetrahedron located on the normal line of the boundary node to replace the coefficient matrices of the system equation. Through the enhanced volume source boundary point analysis of various examples and the sound field of a vibrating rectangular box in a semi-anechoic chamber, it has revealed that the calculating speed of the EVSBPM is more than 10 times faster than that of the VSBPM while it works on the aspects of its calculating precision and stability, adaptation to geometric shape of vibrating body as well as its ability to overcome the non-uniqueness problem.展开更多
Numerical solutions of Riemann problems for 2-D scalar conservation law are given by a second order accurate MmB (locally Maximum-minimum Bounds preserving) scheme which is non-splitting. The numerical computations s...Numerical solutions of Riemann problems for 2-D scalar conservation law are given by a second order accurate MmB (locally Maximum-minimum Bounds preserving) scheme which is non-splitting. The numerical computations show that the scheme has high resolution and non-oscillatory properties. The results are completely in accordance with the theoretical solutions and all cases are distinguished efficiently展开更多
基金This work is supported by the National Natural Science Foundation of China (59575017) and the Technical Developmental Foundation of Machinery Industry (97JA0104).
文摘The Volume Source Boundary Point Method (VSBPM) is greatly improved so that it will speed up the VSBPM's solution of the acoustic radiation problem caused by the vibrating body. The fundamental solution provided by Helmholtz equation is enforced in a weighted residual sense over a tetrahedron located on the normal line of the boundary node to replace the coefficient matrices of the system equation. Through the enhanced volume source boundary point analysis of various examples and the sound field of a vibrating rectangular box in a semi-anechoic chamber, it has revealed that the calculating speed of the EVSBPM is more than 10 times faster than that of the VSBPM while it works on the aspects of its calculating precision and stability, adaptation to geometric shape of vibrating body as well as its ability to overcome the non-uniqueness problem.
文摘Numerical solutions of Riemann problems for 2-D scalar conservation law are given by a second order accurate MmB (locally Maximum-minimum Bounds preserving) scheme which is non-splitting. The numerical computations show that the scheme has high resolution and non-oscillatory properties. The results are completely in accordance with the theoretical solutions and all cases are distinguished efficiently