期刊文献+
共找到19,156篇文章
< 1 2 250 >
每页显示 20 50 100
基于GPGPU-sim的多kernel场景下GPGPU性能优化实验方法
1
作者 张军 魏继桢 +2 位作者 沈凡凡 谭海 何炎祥 《实验技术与管理》 CAS 北大核心 2024年第7期87-93,共7页
该文介绍了基于GPGPU-sim的多kernel环境下GPGPU性能优化实验方法,旨在为初学者开展多kernenl场景下GPGPU性能优化研究提供实验方法参考,也能为计算机系统结构教学提供案例。文中重点分析讨论了基于GPGPU-sim模拟器、多kernel场景下的... 该文介绍了基于GPGPU-sim的多kernel环境下GPGPU性能优化实验方法,旨在为初学者开展多kernenl场景下GPGPU性能优化研究提供实验方法参考,也能为计算机系统结构教学提供案例。文中重点分析讨论了基于GPGPU-sim模拟器、多kernel场景下的一种自适应线程块调度方法的改进思想、实验方法及过程,还对GPGPU的微系统结构、GPGPU-sim模拟器及源代码结构进行了介绍。实验结果表明,该文阐述的实验方法可行,相对于基准方法,该文提出的改进策略可以提升多kernel场景下GPGPU的执行效率。 展开更多
关键词 kernel场境 GPGPU GPGPU-sim 性能优化
下载PDF
我国护理人力资源区域差异的演变特征——基于Dagum基尼系数分解和Kernel核密度估计的实证研究
2
作者 王佳怡 沈芸 +2 位作者 朱燕 宋天敕 陈洁婷 《军事护理》 CSCD 北大核心 2024年第11期90-94,共5页
目的分析我国护理人力资源的区域差异及分布动态演进,为我国护理人力资源的合理配置和规划提供参考。方法基于2011-2022年省级护理人力资源面板数据,通过测算Kernel密度和Dagum基尼系数对我国护理人力资源的区域差异及分布动态演进进行... 目的分析我国护理人力资源的区域差异及分布动态演进,为我国护理人力资源的合理配置和规划提供参考。方法基于2011-2022年省级护理人力资源面板数据,通过测算Kernel密度和Dagum基尼系数对我国护理人力资源的区域差异及分布动态演进进行分析评价。结果2011-2022年,在空间分布上,全国及各地区护理人力资源总量呈增加趋势,各区域差异逐步降低,且两极化特征明显;在区域差异上,我国护理人力资源总体差异均值为0.1149;区域内呈东部>西部>中部>东北区域的梯度逐步递增趋势;区域间差异占总体差异的40.61%。结论全国护理人力资源总体差异处于相对合理状态,区域间差异是主要来源,均等化水平逐步提升;政府应针对各区域精准施策,进一步稳定护理人力资源队伍,完善护理人力资源结构以促进护理人力资源的优质均衡发展。 展开更多
关键词 护理人力资源 区域差异 Dagum基尼系数 kernel密度估计
下载PDF
The cytosolic isoform of triosephosphate isomerase,ZmTPI4,is required for kernel development and starch synthesis in maize(Zea mays L.)
3
作者 Wenyu Li Han Wang +7 位作者 Qiuyue Xu Long Zhang Yan Wang Yongbiao Yu Xiangkun Guo Zhiwei Zhang Yongbin Dong Yuling Li 《The Crop Journal》 SCIE CSCD 2024年第2期401-410,共10页
Triosephosphate isomerase(TPI)is an enzyme that functions in plant energy production,accumulation,and conversion.To understand its function in maize,we characterized a maize TPI mutant,zmtpi4.In comparison to the wild... Triosephosphate isomerase(TPI)is an enzyme that functions in plant energy production,accumulation,and conversion.To understand its function in maize,we characterized a maize TPI mutant,zmtpi4.In comparison to the wild type,zmtpi4 mutants showed altered ear development,reduced kernel weight and starch content,modified starch granule morphology,and altered amylose and amylopectin content.Protein,ATP,and pyruvate contents were reduced,indicating ZmTPI4 was involved in glycolysis.Although subcellular localization confirmed ZmTPI4 as a cytosolic rather than a plastid isoform of TPI,the zmtpi4 mutant showed reduced leaf size and chlorophyll content.Overexpression of ZmTPI4 in Arabidopsis led to enlarged leaves and increased seed weight,suggesting a positive regulatory role of ZmTPI4 in kernel weight and starch content.We conclude that ZmTPI4 functions in maize kernel development,starch synthesis,glycolysis,and photosynthesis. 展开更多
关键词 MAIZE kernel STARCH Weight PHOTOSYNTHESIS
下载PDF
HEAT KERNEL ON RICCI SHRINKERS(II)
4
作者 Yu LI Bing WANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1639-1695,共57页
This paper is the sequel to our study of heat kernel on Ricci shrinkers[29].In this paper,we improve many estimates in[29]and extend the recent progress of Bamler[2].In particular,we drop the compactness and curvature... This paper is the sequel to our study of heat kernel on Ricci shrinkers[29].In this paper,we improve many estimates in[29]and extend the recent progress of Bamler[2].In particular,we drop the compactness and curvature boundedness assumptions and show that the theory of F-convergence holds naturally on any Ricci flows induced by Ricci shrinkers. 展开更多
关键词 Ricci flow Ricci shrinker heat kernel
下载PDF
Quantification of the adulteration concentration of palm kernel oil in virgin coconut oil using near-infrared hyperspectral imaging
5
作者 Phiraiwan Jermwongruttanachai Siwalak Pathaveerat Sirinad Noypitak 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期298-309,共12页
The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production ... The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production costs,which diminishes the quality of the VCO.This study used NIR hyperspectral imaging in the wavelength region 900-1,650 nm to create a quantitative model for the detection of PKO contaminants(0-100%)in VCO and to develop predictive mapping.The prediction equation for the adulteration of VCO with PKO was constructed using the partial least squares regression method.The best predictive model was pre-processed using the standard normal variate method,and the coefficient of determination of prediction was 0.991,the root mean square error of prediction was 2.93%,and the residual prediction deviation was 10.37.The results showed that this model could be applied for quantifying the adulteration concentration of PKO in VCO.The prediction adulteration concentration mapping of VCO with PKO was created from a calibration model that showed the color level according to the adulteration concentration in the range of 0-100%.NIR hyperspectral imaging could be clearly used to quantify the adulteration of VCO with a color level map that provides a quick,accurate,and non-destructive detection method. 展开更多
关键词 virgin coconut oil ADULTERATION CONTAMINATION palm kernel oil hyperspectral imaging
下载PDF
A wealth distribution model with a non-Maxwellian collision kernel
6
作者 孟俊 周霞 赖绍永 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期224-231,共8页
A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the... A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the kinetic theory of rarefied gases, we construct a two-group kinetic model for the evolution of wealth distribution. Under the continuous trading limit, the Fokker–Planck equation is derived and its steady-state solution is obtained. For the non-Maxwellian collision kernel, we find a suitable redistribution operator to match the taxation. Our results illustrate that taxation and redistribution have the property to change the Pareto index. 展开更多
关键词 kinetic theory non-Maxwellian collision kernel wealth distribution Pareto index
下载PDF
Nuclear charge radius predictions by kernel ridge regression with odd-even effects
7
作者 Lu Tang Zhen-Hua Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期94-102,共9页
The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(... The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method. 展开更多
关键词 Nuclear charge radius Machine learning kernel ridge regression method
下载PDF
Combined application of organic fertilizer and chemical fertilizer alleviates the kernel position effect in summer maize by promoting post-silking nitrogen uptake and dry matter accumulation
8
作者 Lichao Zhai Lihua Zhang +7 位作者 Yongzeng Cui Lifang Zhai Mengjing Zheng Yanrong Yao Jingting Zhang Wanbin Hou Liyong Wu Xiuling Jia 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1179-1194,共16页
Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CA... Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity. 展开更多
关键词 chemical fertilizer dry mater accumulation kernel position effect N uptake organic fertilizer
下载PDF
Identification of reservoir types in deep carbonates based on mixedkernel machine learning using geophysical logging data
9
作者 Jin-Xiong Shi Xiang-Yuan Zhao +3 位作者 Lian-Bo Zeng Yun-Zhao Zhang Zheng-Ping Zhu Shao-Qun Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1632-1648,共17页
Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analy... Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analysis and empirical formula methods for identifying reservoir types using geophysical logging data have high uncertainty and low efficiency,which cannot accurately reflect the nonlinear relationship between reservoir types and logging data.Recently,the kernel Fisher discriminant analysis(KFD),a kernel-based machine learning technique,attracts attention in many fields because of its strong nonlinear processing ability.However,the overall performance of KFD model may be limited as a single kernel function cannot simultaneously extrapolate and interpolate well,especially for highly complex data cases.To address this issue,in this study,a mixed kernel Fisher discriminant analysis(MKFD)model was established and applied to identify reservoir types of the deep Sinian carbonates in central Sichuan Basin,China.The MKFD model was trained and tested with 453 datasets from 7 coring wells,utilizing GR,CAL,DEN,AC,CNL and RT logs as input variables.The particle swarm optimization(PSO)was adopted for hyper-parameter optimization of MKFD model.To evaluate the model performance,prediction results of MKFD were compared with those of basic-kernel based KFD,RF and SVM models.Subsequently,the built MKFD model was applied in a blind well test,and a variable importance analysis was conducted.The comparison and blind test results demonstrated that MKFD outperformed traditional KFD,RF and SVM in the identification of reservoir types,which provided higher accuracy and stronger generalization.The MKFD can therefore be a reliable method for identifying reservoir types of deep carbonates. 展开更多
关键词 Reservoir type identification Geophysical logging data kernel Fisher discriminantanalysis Mixedkernel function Deep carbonates
下载PDF
Influence of broken kernels content on soybean quality during storage
10
作者 Lazaro da Costa Correa Canizares Cesar Augusto Gaioso +5 位作者 Newiton da Silva Timm Silvia Leticia Rivero Meza Adriano Hirsch Ramos Maurício de Oliveira Everton Lutz Moacir Cardoso Elias 《Grain & Oil Science and Technology》 CAS 2024年第2期105-112,共8页
Although it is recognized that the post-harvest system is most responsible for the loss of soybean quality,the real impact of this loss is still unknown.Brazilian regulation allows 15%and 30%of broken soybean for grou... Although it is recognized that the post-harvest system is most responsible for the loss of soybean quality,the real impact of this loss is still unknown.Brazilian regulation allows 15%and 30%of broken soybean for group I and group II(quality groups),respectively.However,the industry is not informed about the loss in the quality parameters of soybeans and its impacts during long-term storage.Therefore,the objective was to evaluate the effect of the breakage kernel percentage of soybean stored for 12 months.Content of 15% of breakage kernels did not affect soybean quality.However,content of 30% of breakage kernels affected significantly soybean quality,which was evidenced by the increase of up to 75% in moldy soybeans,72% in acidity,50% in leached solids,27% in electrical conductivity,and the decrease of up to 12% in soluble protein,6.4% in germination and 3.5% in thousand kernel weight after 8 months of storage.Although the legislation establishes a percentage limit,it is recommended to store soybeans with up to 15% breakage kernels.On the contrary,values higher than that can cause a significant reduction in soybean quality,resulting in commercial losses. 展开更多
关键词 Soybean quality Breakage kernels Storage problems Grain defects Quality parameters
下载PDF
Convergence analysis for complementary-label learning with kernel ridge regression
11
作者 NIE Wei-lin WANG Cheng XIE Zhong-hua 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期533-544,共12页
Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the tru... Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the true label and the complementary label,and some loss functions have been developed to handle this problem.In this paper,we show that CLL can be transformed into ordinary classification under some mild conditions,which indicates that the complementary labels can supply enough information in most cases.As an example,an extensive misclassification error analysis was performed for the Kernel Ridge Regression(KRR)method applied to multiple complementary-label learning(MCLL),which demonstrates its superior performance compared to existing approaches. 展开更多
关键词 multiple complementary-label learning partial label learning error analysis reproducing kernel Hilbert spaces
下载PDF
CL2ES-KDBC:A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems
12
作者 Talal Albalawi P.Ganeshkumar 《Computers, Materials & Continua》 SCIE EI 2024年第3期3511-3528,共18页
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo... The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks. 展开更多
关键词 IoT security attack detection covariance linear learning embedding selection kernel distributed bayes classifier mongolian gazellas optimization
下载PDF
Hexavalent Chromium Cr (VI) Removal from Water by Mango Kernel Powder
13
作者 Amadou Sarr Gning Cheikh Gaye +3 位作者 Antoine Blaise Kama Pape Abdoulaye Diaw Diène Diégane Thiare Modou Fall 《Journal of Materials Science and Chemical Engineering》 2024年第1期84-103,共20页
Metal trace elements (MTE) are among the most harmful micropollutants of natural waters. Eliminating them helps improve the quality and safety of drinking water and protect human health. In this work, we used mango ke... Metal trace elements (MTE) are among the most harmful micropollutants of natural waters. Eliminating them helps improve the quality and safety of drinking water and protect human health. In this work, we used mango kernel powder (MKP) as bioadsorbent material for removal of Cr (VI) from water. Uv-visible spectroscopy was used to monitor and quantify Cr (VI) during processing using the Beer-Lambert formula. Some parameters such as pH, mango powder, mass and contact time were optimized to determine adsorption capacity and chromium removal rate. Adsorption kinetics, equilibrium, isotherms and thermodynamic parameters such as ΔG˚, ΔH˚, and ΔS˚, as well as FTIR were studied to better understand the Cr (VI) removal process by MKP. The adsorption capacity reached 94.87 mg/g, for an optimal contact time of 30 min at 298 K. The obtained results are in accordance with a pseudo-second order Freundlich adsorption isotherm model. Finally FTIR was used to monitor the evolution of absorption bands, while Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to evaluate surface properties and morphology of the adsorbent. 展开更多
关键词 ADSORPTION CHROMIUM Mango kernel Powder Spectroscopy Analysis Water Treatment
下载PDF
Heat Kernel Estimates on Simple Random Walks and On-Diagonal Upper Bounds
14
作者 Runquan Zuo Yuxiao Yan +2 位作者 Zishan Zhu Liwen Yao Qihao Han 《Journal of Applied Mathematics and Physics》 2024年第10期3613-3625,共13页
We primarily provide several estimates for the heat kernel defined on the 2-dimensional simple random walk. Additionally, we offer an estimate for the heat kernel on high-dimensional random walks, demonstrating that t... We primarily provide several estimates for the heat kernel defined on the 2-dimensional simple random walk. Additionally, we offer an estimate for the heat kernel on high-dimensional random walks, demonstrating that the heat kernel in higher dimensions converges rapidly. We also compute the constants involved in the estimate for the 1-dimensional heat kernel. Furthermore, we discuss the general case of on-diagonal estimates for the heat kernel. 展开更多
关键词 Heat kernel Simple Random Walk On-Diagonal Estimate
下载PDF
Solving Neumann Boundary Problem with Kernel-Regularized Learning Approach
15
作者 Xuexue Ran Baohuai Sheng 《Journal of Applied Mathematics and Physics》 2024年第4期1101-1125,共25页
We provide a kernel-regularized method to give theory solutions for Neumann boundary value problem on the unit ball. We define the reproducing kernel Hilbert space with the spherical harmonics associated with an inner... We provide a kernel-regularized method to give theory solutions for Neumann boundary value problem on the unit ball. We define the reproducing kernel Hilbert space with the spherical harmonics associated with an inner product defined on both the unit ball and the unit sphere, construct the kernel-regularized learning algorithm from the view of semi-supervised learning and bound the upper bounds for the learning rates. The theory analysis shows that the learning algorithm has better uniform convergence according to the number of samples. The research can be regarded as an application of kernel-regularized semi-supervised learning. 展开更多
关键词 Neumann Boundary Value kernel-Regularized Approach Reproducing kernel Hilbert Space The Unit Ball The Unit Sphere
下载PDF
AHermitian C^(2) Differential Reproducing Kernel Interpolation Meshless Method for the 3D Microstructure-Dependent Static Flexural Analysis of Simply Supported and Functionally Graded Microplates
16
作者 Chih-Ping Wu Ruei-Syuan Chang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期917-949,共33页
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend... This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant. 展开更多
关键词 Consistent/modified couple stress theory differential reproducing kernel methods microplates point collocation methods static flexural 3D microstructure-dependent analysis
下载PDF
Enhancing microseismic/acoustic emission source localization accuracy with an outlier-robust kernel density estimation approach
17
作者 Jie Chen Huiqiong Huang +4 位作者 Yichao Rui Yuanyuan Pu Sheng Zhang Zheng Li Wenzhong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期943-956,共14页
Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l... Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications. 展开更多
关键词 Microseismic source/acoustic emission(MS/AE) kernel density estimation(KDE) Damping linear correction Source location Abnormal arrivals
下载PDF
Bayesian Classifier Based on Robust Kernel Density Estimation and Harris Hawks Optimisation
18
作者 Bi Iritie A-D Boli Chenghao Wei 《International Journal of Internet and Distributed Systems》 2024年第1期1-23,共23页
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr... In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers. 展开更多
关键词 CLASSIFICATION Robust kernel Density Estimation M-ESTIMATION Harris Hawks Optimisation Algorithm Complete Cross-Validation
下载PDF
基于Kernel密度解释的江苏省城市规模结构演化研究 被引量:11
19
作者 孙在宏 王亚华 袁源 《人文地理》 CSSCI 北大核心 2012年第5期89-93,共5页
城市规模结构研究可以反映城市在不同规模等级中的分布状况及城市人口集聚或分散程度,有助于认识城市体系发展所处的阶段以及该区域城市化进程的特征。研究运用Kernel城市空间密度分析方法,直观的反映了江苏省城市规模分布格局的连续变... 城市规模结构研究可以反映城市在不同规模等级中的分布状况及城市人口集聚或分散程度,有助于认识城市体系发展所处的阶段以及该区域城市化进程的特征。研究运用Kernel城市空间密度分析方法,直观的反映了江苏省城市规模分布格局的连续变化。分别从城市体系的空间格局、城镇密集带的结构变化和长三角城市群城镇网络构建等视角对城市规模结构进行探讨,指出全省城市规模空间分布的Kernel密度在整体上具有西高东低、南密北疏的态势;城市体系的空间模式由最初的核心—边缘结构,逐渐向点—轴—面结构演化;南京都市圈的进一步延伸,将促进长三角多核心巨型城市网络向更大地域范围拓展。由此提出全省在不断优化城市体系的同时,需要更加注重大中城市及小城镇协调发展机制的建设,加强对苏中、苏北地区城市人口规模的扩张和城市规模布局的均衡,建立具备完整城市功能的网络城市发展模式,以更好的促进区域一体化发展。 展开更多
关键词 城市体系 城市规模结构 kernel密度 江苏省
下载PDF
早期糖尿病性视网膜病变mf-ERG一阶kernel反应改变 被引量:7
20
作者 严良 赵婕 +3 位作者 秦洁 丁琦 陆豪 杨蕾 《眼科新进展》 CAS 2006年第2期120-123,共4页
目的 观察早期糖尿病性视网膜病变(简称糖网病)眼视网膜功能。方法将临床确诊为糖尿病并且最佳矫正视力在1.0以上、OCT检查视网膜厚度正常、眼底镜检正常或为轻度非增生性糖尿病性视网膜病变患者共27例54眼作为糖尿病组(按眼底检查... 目的 观察早期糖尿病性视网膜病变(简称糖网病)眼视网膜功能。方法将临床确诊为糖尿病并且最佳矫正视力在1.0以上、OCT检查视网膜厚度正常、眼底镜检正常或为轻度非增生性糖尿病性视网膜病变患者共27例54眼作为糖尿病组(按眼底检查情况分为轻度糖网病组与糖尿病无糖网病组);另将正常同龄27例35眼作为正常对照组,分别行多焦视网膜电图一阶kernel反应(first order kernel)检查;将检查结果分别作比较。结果 与正常对照组相比,糖尿病组FOK P1波1环的振幅密度值降低,差异有高度显著性(P=0.0002);N1波5环、P1波4~5环的峰时均有延迟,差异有显著性(P=0.0378、0.0172、0.0026);其后极部30°范围内P1波峰时也延迟,差异有显著性(P=0.0121)。与糖尿病无糖网病组相比,轻度糖网病组FOK N1波4环的振幅密度值增高,差异有显著性(P=0.0469);N1波3、5环,P1波3~5环的峰时均延迟,差异有显著性(P=0.0084、0.0428、0.0102、0.0128、0.0070);其后极部30°范围P1波峰时明显延迟,差异有高度显著性(P=0.0027)。结论糖尿病患者视力尚正常时,其黄斑中心凹感光细胞功能已有所下降;早期糖网病FOK局部反应增高可能与糖尿病早期视网膜局部血流异常增加有关;糖尿病眼FOK的峰时延迟较振幅下降更为敏感,峰时可作为糖网病检测的独立指标;早期糖网病眼视网膜功能异常并非仅局限于内层视网膜;FOK是检测早期糖尿病性视网膜病变的有效手段。 展开更多
关键词 糖尿病性视网膜病变 多焦视网膜电图 kernel反应
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部