It is shown that the maximal singular integral operator with kernels satisfying Ho rmander's condition is of weak type (1,1) and L^p (1〈p〈∞) bounded without assuming that the underlying measure p is doubling. ...It is shown that the maximal singular integral operator with kernels satisfying Ho rmander's condition is of weak type (1,1) and L^p (1〈p〈∞) bounded without assuming that the underlying measure p is doubling. Under stronger smoothness conditions,such estimates can be obtained by using a Cotlar's inequality. This inequality is not applicable here and it is noticeable that the Cotlar's inequality maybe fails under Hormander's condition.展开更多
基金Supported by the Science Foundation of the Education Department of Zhejiang Province (20050316).
文摘It is shown that the maximal singular integral operator with kernels satisfying Ho rmander's condition is of weak type (1,1) and L^p (1〈p〈∞) bounded without assuming that the underlying measure p is doubling. Under stronger smoothness conditions,such estimates can be obtained by using a Cotlar's inequality. This inequality is not applicable here and it is noticeable that the Cotlar's inequality maybe fails under Hormander's condition.