The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretize...The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretized into 23 sub-basins and 226 Hydrologic Response Units (HRUs) using 3 arc second (90 m × 90 m) pixel resolution SRTM DEM with stream gauge B7H015 as the Basin outlet. Observed stream flow data at B7H015 were used for model calibration (1988-2001) and validation (2002-2013) using the split sample approach. Relative global sensitivity analysis using SUFI-2 algorithm was used to determine sensitive parameters to stream flow for calibration of the model. Performance efficiency of the Olifants SWAT model was assessed using Nash-Sutcliffe (NSE), coefficient of determination (R<sup>2</sup>), Percent Bias (PBIAS) and Root Mean Square Error-Observation Standard deviation Ratio (RSR). Sensitivity analysis revealed in decreasing order of significance, runoff curve number (CN2), alpha bank factor (ALPHA_BNK), soil evaporation compensation factor (ESCO), soil available water capacity (SOIL_AWC, mm H<sub>2</sub>O/mm soil), groundwater delay (GW_ DELAY, days) and groundwater “revap” coefficient (GW_REVAP) to be the most sensitive parameters to stream flow. Analysis of the model during the calibration period gave the following statistics;NSE = 0.88;R<sup>2</sup> = 0.89;PBIAS = -11.49%;RSR = 0.34. On the other hand, statistics during the validation period were NSE = 0.67;R<sup>2 </sup>= 0.79;PBIAS = -20.69%;RSR = 0.57. The observed statistics indicate the applicability of the SWAT model in simulating the hydrology of the Olifants Basin and therefore can be used as a Decision Support Tool (DST) by water managers and other relevant decisions making bodies to influence policy directions on the management of watershed processes especially water resources.展开更多
Strategic transportation network models are often used as support tools in the framework of decisions to be taken at the policy level, such as the Trans-European Network projects. These models are mostly setup using a...Strategic transportation network models are often used as support tools in the framework of decisions to be taken at the policy level, such as the Trans-European Network projects. These models are mostly setup using aggregated or limited data. If their calibration is regularly mentioned in the literature, their validation is barely discussed. In this paper, several modal choice model specifications that make only use of explanatory variables available at the network level are described and applied to a large scale case. A validation exercise is performed at three levels of aggregation. The paper is designed from a strategic transport planning perspective, and does not present new modal choice formulations or assignment procedures. Its main added value is the focus on calibration and validation considerations. Despite the limited explanatory information used, the global performance of the best models can be considered as satisfactory. However, the quality of the models varies from mode to mode, the use of railway transport being the most difficult to predict without more specific input.展开更多
Maize is an emerging important crop in Bangladesh because of its high yield potential and economic profitability compared to rice and wheat crops. There is a need to understand the growth and yield behavior of this cr...Maize is an emerging important crop in Bangladesh because of its high yield potential and economic profitability compared to rice and wheat crops. There is a need to understand the growth and yield behavior of this crop in varying production environments of Bangladesh. Crop model such as Decision Support System For Agro-technology Transfer (DSSAT) version 4.6 (DSSAT hereafter) can be utilized cost effectively to study the performances of maize under different production environments. It needs to calibrate and validate DSSAT model for commonly cultivated maize cultivars in Bangladesh and subsequently take the model to various applications, including inputs and agronomic management options and climate change that impacts analyses. So, the present study was undertaken to firstly calibrate DSSAT model for popular four hybrid maize cultivars (BARI Hybrid Maize-7, BARI Hybrid Maize-9, Pioneer 30B07 and NK-40). Subsequently, it proceeded with the validation with independent field data sets for evaluating their growth performances. The genetic coefficients for these cultivars were evaluated by using Genotype coefficient calculator (GENCALC) and Generalized likelihood uncertainty estimation (GLUE) module of DSSAT on the basis of first season experiment. The performance of the model was satisfactory and within the significant limits. After calibration, the model was tested for its performance through validation procedure by using second season data. The model performed satisfactorily through phenology, biomass, leaf area index (LAI) and grain yield. Phenology, as estimated through days to flower initiation and maturity, was in good agreement, although simulated results were slightly over predicted compared to observed values but within the statistical significance limit...when compared with observed values at specific growth stages of the crop. The final yield values (10.12 to 10.59 t·ha-1) were in close agreement with the observed values (10.16 to 10.94 t·ha-1), as the percentage error was within tolerable limit (0.39% to 6.81%). The model has been successfully calibrated and validated for Gazipur environment and now can be used for climate change impact studies for similar environments in Bangladesh.展开更多
Soybean and sunflower are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems for forage in addition to their traditional use as protein and/or oil y...Soybean and sunflower are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems for forage in addition to their traditional use as protein and/or oil yielding crops. Rapid and low cost methods of analyzing plant forage quality would be helpful for nutrition management of livestock. We developed and validated calibration models using Near-infrared Reflectance Spectroscopic (NIRS) analysis for 27 different forage quality parameters of organically grown sunflower and soybean leaves or reproductive parts. Crops were managed under conventional tillage or no-till with a cover crop of wheat before soybean and rye-crimson clover before sunflower. From a population of 120 samples from both crops, covering multiple sampling dates within the treatments, calibration models were developed utilizing spectral information covering both visible and NIR region of 61 - 85 randomly chosen samples using modified partial least-squares (MPLS) regression with internal cross validation. Within MPLS protocol, we compared nine different math treatments on the quality of the calibration models. The math treatment “2,4,4,1” yielded the best quality models for all but starch and simple sugars (r2 = 0.699 - 0.999;where the 1st digit is the number of the derivative with 0 for raw spectra, 1 for first derivative, and 2 for second derivative, the 2nd digit is the gap over which the derivative is calculated, the 3rd digit is the number of data points in a running average or smoothing, and the 4th digit is the second smoothing). Prediction of an independent validation set of 28-35 samples with these models yielded excellent agreement between the NIRS predicted values and the reference values except for starch (r2 = 0.8260 - 0.9990). The results showed that the same model was able to adequately quantify a particular forage quality of both crops managed under different tillage treatments and at different stages of growth. Thus, these models can be reliably applied in the routine analysis of soybean and sunflower forage quality for the purposes of livestock nutrient management decisions.展开更多
The hydrologic simulation of a catchment area, described as the transformation of rainfall into runoff, generally uses hydrologic model. This work opts for the global conceptual hydrologic model GR2M, a monthly time s...The hydrologic simulation of a catchment area, described as the transformation of rainfall into runoff, generally uses hydrologic model. This work opts for the global conceptual hydrologic model GR2M, a monthly time step model, to study the Kouilou-Niari basin, the second most important ones of the Republic of Congo. This includes two parameters to model the hydrologic behavior of a catchment area. The choice of the conceptual model GR2M is justified by the reduced number of parameters and the monthly time scale. The objective of this study is to determine the characteristic parameters of the GR2M model, by a calibrating and a validating procedure. The use of these parameters enables to follow the evolution of the water resources from the climatic variables. It has been first carried out a characterization of some physical, geological and climatic factors governing the flow, by dealing with the main climatic variables which constitute the inputs of the hydrologic model. Then, a hydrologic rainfall-runoff modeling allows to calibrate and validate the model at monthly time scale. Taking into account the number of parameters involved in hydrologic processes and the complexity of the cathment area, this model gives acceptable results throughout the Kouilou-Niari basin. The values of the Nash-Sutcliffe criterion and those of the correlation coefficient obtained are greater than 80% in validation, which explains the performance and robustness of the GR2M model on this basin.展开更多
Background: In the context of a nuclear reactor accident, thyroid is the main target organ of radioactive iodines. To avoid as much as possible thyroid disorders or even cancer development, it is recommended to admini...Background: In the context of a nuclear reactor accident, thyroid is the main target organ of radioactive iodines. To avoid as much as possible thyroid disorders or even cancer development, it is recommended to administer a single dose of potassium iodide to people at risk of exposure. Nevertheless, the Fukushima Dai-ichi disaster has pointed out many questions about the conditions of stable iodine prophylaxis implementation highlighting the need for reflection further revision of the actual “iodine doctrine”. Therefore, providing useful data is required notably through the implementation of animal experiments to strengthen current knowledge and to edit new recommendations. Methods: Urinary iodine constitutes a very good indicator to investigate the function of thyroid, its interpretation demands reliable analyses. Prior to perform animal experiments, two calibration methods were designed by our lab and compared together (standard addition and external calibration) to assess the urinary concentration of stable iodine in urine by ICP-MS. They were validated based on several key parameters especially linearity, accuracy and limits of detection (LOD) and quantification (LOQ). Results: The results were nicely satisfying. Indeed, both calibration methods have indicated very good coefficients of correlations, accuracies with low expanded relative uncertainties were obtained. The estimated LOD in the sample for standard addition method and external calibration were fully acceptable, 0.39 μg·L-1 and 0.35 μg·L-1, respectively. All performance criteria have been thus fulfilled successfully. The established methods were proven to be accurate, robust and sensitive. Once validated, both calibration methods were applied to rat urine samples and the results of z-score and Wilcoxon W test concluded that there were no statistically significant differences between both methods.展开更多
Satellite altimeter needs to be calibrated to evaluate the accuracy of sea surface height data.The dedicated altimeter calibration field needs to establish a special calibration strategy and needs to evaluate its cali...Satellite altimeter needs to be calibrated to evaluate the accuracy of sea surface height data.The dedicated altimeter calibration field needs to establish a special calibration strategy and needs to evaluate its calibration ability.This paper describes absolute calibration of HY-2 B altimeter SSH using the GPS calibration method at the newly Wanshan calibration site,located in the Wanshan Islands,China.There are two HY-2 B altimeter passes across the Wanshan calibration site.Pass No.362 is descending and the ground track passes the east of Dan’gan Island.Pass No.375 is ascending and crosses the Zhiwan Island.The GPS data processing strategy of Wanshan calibration site was established and the accuracy of GPS calibration method of Wanshan calibration site was evaluated.Meanwhile,the processing strategies of the HY-2 B altimeter for the Wanshan calibration site were established,and a dedicated geoid model data were used to benefit the calibration accuracy.The time-averaged HY-2 B altimeter bias was approximately 2.12 cm with a standard deviation of 2.08 cm.The performance of the HY-2 B correction microwave radiometer was also evaluated in terms of the wet troposphere path delay and showed a mean difference-0.2 cm with a 1.4 cm standard deviation with respect to the in situ GPS radiosonde.展开更多
The real-time monitoring of environmental radiation dose for nuclear fa-cilities is an important part of safety, in order to guarantee the accuracy of the monitoring results regular calibration is necessary. Around nu...The real-time monitoring of environmental radiation dose for nuclear fa-cilities is an important part of safety, in order to guarantee the accuracy of the monitoring results regular calibration is necessary. Around nuclear facilities there are so many environmental dosimeters installed dispers-edly, because of its huge quantity, widely distributed, and in real-time monitoring state;it will cost lots of manpower and finance if it were tak-en to calibrate on standard laboratory;what’s more it will make the en-vironment out of control. To solve the problem of the measurement ac-curacy of the stationary gamma radiation dosimeter, an on-site calibra-tion method is proposed. The radioactive source is X-ray spectrum, and the dose reference instrument which has been calibrated by the national standard laboratory is a high pressure ionization. On-site calibration is divided into two parts;firstly the energy response experiment of dosim-eter for high and low energy is done in the laboratory, and the energy response curve is obtained combining with Monte Carlo simulation;sec-ondly experiment is carried out in the field of the measuring dosimeter, and the substitution method to calibrate the dosimeter is used;finally the calibration coefficient is gotten through energy curve correction. In order to verify the accuracy of on-site calibration method, the calibrated dosimeter is test in the standard laboratory and the error is 3.4%. The re-sult shows that the on-site calibration method using X-ray is feasible, and it can improves the accuracy of the measurement results of the stationary γ-ray instrument;what’s more important is that it has great reference value for the radiation safety management and radiation environment evaluation.展开更多
Validity of CA-Markov in land use and cover change simulation was investigated at the Langat Basin, Selangor, Malaysia. CA-Markov validation was performed using validation metrics, allocation disagreement, quantity di...Validity of CA-Markov in land use and cover change simulation was investigated at the Langat Basin, Selangor, Malaysia. CA-Markov validation was performed using validation metrics, allocation disagreement, quantity disagreement, and figure of merit in a three-dimensional space. The figure of merit, quantity error, and allocation error for total landscape simulation using the 1990-1997 calibration data were 5.62%, 3.53%, and 6.13%, respectively. CA-Markov showed a poor performance for land use and cover change simulation due to uncertainties in the source data, the model, and future land use and cover change processes in the study area.展开更多
The paper presented first results elaborated during the European Research Project Re-road which aims at the development of techniques for increasing the recycling rates of reclaimed asphalt. During service life surfac...The paper presented first results elaborated during the European Research Project Re-road which aims at the development of techniques for increasing the recycling rates of reclaimed asphalt. During service life surface asphalt courses are subjected to aging due to oxidation effects which causes the hardening of the binder and thereby a change in the chemical, physical and mechanical properties of the material. Surface courses often contain highly modified binders as well as special additives for improving the performance characteristics. As these layers inhibit the shortest service lives compared to other road construction layers every year high amounts of reclaimed surface asphalt are available for recycling. The question is raised how the reclaimed asphalt consisting of high quality and costly material components can be recycled for optimal added value. To analyze the asphalt mix service life performance and its recyclability during mix design a laboratory method was developed to simulate the real in-situ aging. First the effects of site aging on the binder and asphalt characteristics were presented. Three laboratory aging methods were discussed which aimed the accelerated aging which meets similar property changes as site aging. At last the effects of two different laboratory aging methods on the same SMA mixture were compared.展开更多
Channel roughness is a sensitive parameter in development of hydraulic model for flood forecasting and flood inundation mapping. The requirement of multiple channel roughness coefficient Mannnig’s ‘n’ values along ...Channel roughness is a sensitive parameter in development of hydraulic model for flood forecasting and flood inundation mapping. The requirement of multiple channel roughness coefficient Mannnig’s ‘n’ values along the river has been spelled out through simulation of floods, using HEC-RAS, for years 1998 and 2003, supported with the photographs of river reaches collected during the field visit of the lower Tapi River. The calibrated model, in terms of channel roughness, has been used to simulate the flood for year 2006 in the river. The performance of the calibrated HEC-RAS based model has been accessed by capturing the flood peaks of observed and simulated floods;and computation of root mean squared error (RMSE) for the intermediated gauging stations on the lower Tapi River.展开更多
The significant wave height(SWH)is one of the main parameters that describe wave characteristics and is widely used in wave research fields.Wave parameters measured by radar are influenced by the offshore distance and...The significant wave height(SWH)is one of the main parameters that describe wave characteristics and is widely used in wave research fields.Wave parameters measured by radar are influenced by the offshore distance and sea state.Validation and calibration are of great significance for radar data applications.The nadir beam of surface wave investigation and monitoring(SWIM)detects the global-ocean-surface SWH.To determine the product quality of SWIM SWH,this paper carried out time-space matching between SWIM and buoy data.The data qualities were evaluated under different offshore distances and sea states.An improved calibration method was proposed based on sea state segmentation,which considered the distribution of the point collocation numbers in various sea states.The results indicate that(1)the SWIM SWH accuracy at offshore distances greater than 50 km is higher than that at distances less than 50 km,with an root mean squared error(RMSE)of 0.2444 m,scatter index(SI)of 0.1156 and relative error(RE)of 9.97%at distances greater than 50 km and those of 0.4460 m,0.2230 and18.66%at distances less than 50 km.(2)SWIM SWH qualities are better in moderate and rough sea states with RMSEs of 0.2848 m and 0.3169 m but are worse in slight and very rough sea states.(3)The effect of the improved calibration method is superior to the traditional method in each sea state and overall data,and the RMSE of SWIM SWH is reduced from the raw 0.3135 m to 0.2859 m by the traditional method and 0.1982 m by the improved method.The influence of spatiotemporal window selection on data quality evaluation was analyzed in this paper.This paper provides references for SWIM SWH product applications.展开更多
Channel roughness is the most sensitive parameter in development of hydraulic model for flood forecasting and flood plane mapping. Hence, in the present study it is attempted to calibrate the channel roughness coeffic...Channel roughness is the most sensitive parameter in development of hydraulic model for flood forecasting and flood plane mapping. Hence, in the present study it is attempted to calibrate the channel roughness coefficient (Manning’s “n” value) along the river Mahanadi, Odisha through simulation of floods using HEC-RAS. For calibration of Manning’s “n” value the flood of year 2003 has been considered. The calibrated model, in terms of channel roughness, has been used to simulate the flood for year 2006 in the same river reach. The performance of the calibrated and validated HEC-RAS based model is tested using Nash and Sutcliffe efficiency. It is concluded from the simulation study that Mannnig’s “n” value of 0.032 gives best result for Khairmal to Munduli reach of Mahanadi River.展开更多
The main objective of this paper is to report on preliminary validation results of the newly applied sediment yields estimation model in Tanzania, the Pacific Southwest Inter-Agency Committee (PSIAC). This is a follow...The main objective of this paper is to report on preliminary validation results of the newly applied sediment yields estimation model in Tanzania, the Pacific Southwest Inter-Agency Committee (PSIAC). This is a follow-up research on the call to customize simple and/or multi-processes sediment yields estimation models such as PSIAC in the region. The PSIAC approach is based on a sediment yield classification scheme employing individual drainage basin characteristics: surface geology, soils, climate, runoff, topography, ground cover, land use, upland erosion, channel erosion, and sediment transport. In this study, PSIAC model is built from readily available environmental variables sourced from Government ministries/agencies and public domain global spatial data. The sediment classification exercise was verified with field observations. The set up model was then validated by 31 small dams’ siltation surveys and previous sedimentation study findings. PSIAC model performance for major part of central Tanzania was good during calibration (BIAS = 7.88%) and validation (BIAS = 18.12%). Another observation was that uncalibrated model performs fairly well, though performance improves with calibration. The extension of the uncalibrated PSIAC model to 3 selected large basins of Tanzania, with drainage areas size up to 223,000 km2, registered a satisfactory performance in one of them with fair performance in the rest. For large basins, the performance seems to correlate with general ground slope. The higher the slope, the better the performance. It is, however, not apparent from this study on the threshold drainage area and slope requirements for better performance of the model. Notwithstanding, the PSIAC model has improved previous sediment yields estimates based on simple regressive models. Finally, the paper proposes two main further research works: use of high resolution geospatial data and additional validation dams siltation data even beyond the central part of Tanzania, and carries out rigorous study on spatial scale model application limitations.展开更多
Models are tools widely used in the prediction of hydrological phenomena. The present study aims to contribute to the implementation of an automatic optimization strategy of parameters for the calibration of a hydrolo...Models are tools widely used in the prediction of hydrological phenomena. The present study aims to contribute to the implementation of an automatic optimization strategy of parameters for the calibration of a hydrological model based on the least action principle (HyMoLAP). The Downhill Simplex method is also known as the Nelder-Mead algorithm, which is a heuristic research method, is used to optimize the cost function on a given domain. The performance of the model is evaluated by the Nash Stucliffe Efficiency Index (NSE), the Root Mean Square Error (RMSE), the coefficient of determination (R2), the Mean Absolute Error (MAE). A comparative estimation is conducted using the Nash-Sutcliffe Modeling Efficiency Index and the mean relative error to evaluate the performance of the optimization method. It appears that the variation in water balance parameter values is acceptable. The simulated optimization method appears to be the best in terms of lower variability of parameter values during successive tests. The quality of the parameter sets obtained is good enough to impact the performance of the objective functions in a minimum number of iterations. We have analyzed the algorithm from a technical point of view, and we have carried out an experimental comparison between specific factors such as the model structure and the parameter’s values. The results obtained confirm the quality of the model (NSE = 0.90 and 0.75 respectively in calibration and validation) and allow us to evaluate the efficiency of the Nelder-Mead algorithm in the automatic calibration of the HyMoLAP model. The developed hybrid automatic calibration approach is therefore one of the promising ways to reduce computational time in rainfall-runoff modeling.展开更多
When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response...When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites,and a valid numerical model was obtained through simulation model test.Finally,the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures.The key findings are as follows.The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure.When a liquefiable layer exists in the middle of the structure,the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer.The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site.The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site.展开更多
Calibration coefficients validation is the foundation for ascertaining the sensor performance and carrying out the quantitative application.Based on the analysis of the differences between the calibration and validati...Calibration coefficients validation is the foundation for ascertaining the sensor performance and carrying out the quantitative application.Based on the analysis of the differences between the calibration and validation,two calibration coefficients validation methods were introduced in this paper.Taking the HJ-1A satellite CCD1 camera as an example,the uncertainties of calibration coefficients validation were analyzed.The calibration coefficients validation errors were simulated based on the measured data at an Inner Mongolia test site.The result showed that in the large view angle,the ground directional reflectance variation and the atmospheric path variation were the main error sources in calibration coefficients validation.The ground directional reflectance correction and atmospheric observation angle normalization should be carried out to improve the validation accuracy of calibration coefficients.展开更多
An essential task in evaluating global water resource and pollution problems is to obtain the optimum set of parameters in hydrological models through calibra- tion and validation. For a large-scale watershed, single-...An essential task in evaluating global water resource and pollution problems is to obtain the optimum set of parameters in hydrological models through calibra- tion and validation. For a large-scale watershed, single-site calibration and validation may ignore spatial heterogeneity and may not meet the needs of the entire watershed. The goal of this study is to apply a multi-site calibration and validation of the Soil and Water Assessment Tool (SWAT), using the observed flow data at three monitoring sites within the Baihe watershed of the Miyun Reservoir watershed, China. Our results indicate that the multi-site calibration parameter values are more reasonable than those obtained from single-site calibrations. These results are mainly due to significant differences in the topographic factors over the large-scale area, human activities and climate variability. The multi-site method involves the division of the large watershed into smaller watersheds, and applying the calibrated parameters of the multi-site calibration to the entire watershed. It was anticipated that this case study could provide experience of multi-site calibration in a large-scale basin, and provide a good foundation for the simulation of other pollutants in follow- up work in the Miyun Reservoir watershed and other similar large areas.展开更多
The calibration experiment data at Dunhuang radiometric calibration site in October, 2008 were used to achieve the on-orbit radiometric calibration for HJ-1A hyper spectral imager (HSI). Two other field experiments da...The calibration experiment data at Dunhuang radiometric calibration site in October, 2008 were used to achieve the on-orbit radiometric calibration for HJ-1A hyper spectral imager (HSI). Two other field experiments data were used to validate the Dunhuang calibration results. One field experiment took place in Inner-Mongolia, China in September, 2008, and the other field experiment took place in Lake Frome, Australia in February, 2009. Finally, the ‘confidence interval of calibration error’ concept was put forward for quantitatively computing the calibration coefficient error confidence interval. The results showed that the Dunhuang calibration results in 2008 had high reliability. The confidence intervals of calibration error for all HSI channels were between 2% to 12%, which could satisfy the requirement of the HSI quantitative applications.展开更多
文摘The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretized into 23 sub-basins and 226 Hydrologic Response Units (HRUs) using 3 arc second (90 m × 90 m) pixel resolution SRTM DEM with stream gauge B7H015 as the Basin outlet. Observed stream flow data at B7H015 were used for model calibration (1988-2001) and validation (2002-2013) using the split sample approach. Relative global sensitivity analysis using SUFI-2 algorithm was used to determine sensitive parameters to stream flow for calibration of the model. Performance efficiency of the Olifants SWAT model was assessed using Nash-Sutcliffe (NSE), coefficient of determination (R<sup>2</sup>), Percent Bias (PBIAS) and Root Mean Square Error-Observation Standard deviation Ratio (RSR). Sensitivity analysis revealed in decreasing order of significance, runoff curve number (CN2), alpha bank factor (ALPHA_BNK), soil evaporation compensation factor (ESCO), soil available water capacity (SOIL_AWC, mm H<sub>2</sub>O/mm soil), groundwater delay (GW_ DELAY, days) and groundwater “revap” coefficient (GW_REVAP) to be the most sensitive parameters to stream flow. Analysis of the model during the calibration period gave the following statistics;NSE = 0.88;R<sup>2</sup> = 0.89;PBIAS = -11.49%;RSR = 0.34. On the other hand, statistics during the validation period were NSE = 0.67;R<sup>2 </sup>= 0.79;PBIAS = -20.69%;RSR = 0.57. The observed statistics indicate the applicability of the SWAT model in simulating the hydrology of the Olifants Basin and therefore can be used as a Decision Support Tool (DST) by water managers and other relevant decisions making bodies to influence policy directions on the management of watershed processes especially water resources.
文摘Strategic transportation network models are often used as support tools in the framework of decisions to be taken at the policy level, such as the Trans-European Network projects. These models are mostly setup using aggregated or limited data. If their calibration is regularly mentioned in the literature, their validation is barely discussed. In this paper, several modal choice model specifications that make only use of explanatory variables available at the network level are described and applied to a large scale case. A validation exercise is performed at three levels of aggregation. The paper is designed from a strategic transport planning perspective, and does not present new modal choice formulations or assignment procedures. Its main added value is the focus on calibration and validation considerations. Despite the limited explanatory information used, the global performance of the best models can be considered as satisfactory. However, the quality of the models varies from mode to mode, the use of railway transport being the most difficult to predict without more specific input.
文摘Maize is an emerging important crop in Bangladesh because of its high yield potential and economic profitability compared to rice and wheat crops. There is a need to understand the growth and yield behavior of this crop in varying production environments of Bangladesh. Crop model such as Decision Support System For Agro-technology Transfer (DSSAT) version 4.6 (DSSAT hereafter) can be utilized cost effectively to study the performances of maize under different production environments. It needs to calibrate and validate DSSAT model for commonly cultivated maize cultivars in Bangladesh and subsequently take the model to various applications, including inputs and agronomic management options and climate change that impacts analyses. So, the present study was undertaken to firstly calibrate DSSAT model for popular four hybrid maize cultivars (BARI Hybrid Maize-7, BARI Hybrid Maize-9, Pioneer 30B07 and NK-40). Subsequently, it proceeded with the validation with independent field data sets for evaluating their growth performances. The genetic coefficients for these cultivars were evaluated by using Genotype coefficient calculator (GENCALC) and Generalized likelihood uncertainty estimation (GLUE) module of DSSAT on the basis of first season experiment. The performance of the model was satisfactory and within the significant limits. After calibration, the model was tested for its performance through validation procedure by using second season data. The model performed satisfactorily through phenology, biomass, leaf area index (LAI) and grain yield. Phenology, as estimated through days to flower initiation and maturity, was in good agreement, although simulated results were slightly over predicted compared to observed values but within the statistical significance limit...when compared with observed values at specific growth stages of the crop. The final yield values (10.12 to 10.59 t·ha-1) were in close agreement with the observed values (10.16 to 10.94 t·ha-1), as the percentage error was within tolerable limit (0.39% to 6.81%). The model has been successfully calibrated and validated for Gazipur environment and now can be used for climate change impact studies for similar environments in Bangladesh.
文摘Soybean and sunflower are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems for forage in addition to their traditional use as protein and/or oil yielding crops. Rapid and low cost methods of analyzing plant forage quality would be helpful for nutrition management of livestock. We developed and validated calibration models using Near-infrared Reflectance Spectroscopic (NIRS) analysis for 27 different forage quality parameters of organically grown sunflower and soybean leaves or reproductive parts. Crops were managed under conventional tillage or no-till with a cover crop of wheat before soybean and rye-crimson clover before sunflower. From a population of 120 samples from both crops, covering multiple sampling dates within the treatments, calibration models were developed utilizing spectral information covering both visible and NIR region of 61 - 85 randomly chosen samples using modified partial least-squares (MPLS) regression with internal cross validation. Within MPLS protocol, we compared nine different math treatments on the quality of the calibration models. The math treatment “2,4,4,1” yielded the best quality models for all but starch and simple sugars (r2 = 0.699 - 0.999;where the 1st digit is the number of the derivative with 0 for raw spectra, 1 for first derivative, and 2 for second derivative, the 2nd digit is the gap over which the derivative is calculated, the 3rd digit is the number of data points in a running average or smoothing, and the 4th digit is the second smoothing). Prediction of an independent validation set of 28-35 samples with these models yielded excellent agreement between the NIRS predicted values and the reference values except for starch (r2 = 0.8260 - 0.9990). The results showed that the same model was able to adequately quantify a particular forage quality of both crops managed under different tillage treatments and at different stages of growth. Thus, these models can be reliably applied in the routine analysis of soybean and sunflower forage quality for the purposes of livestock nutrient management decisions.
文摘The hydrologic simulation of a catchment area, described as the transformation of rainfall into runoff, generally uses hydrologic model. This work opts for the global conceptual hydrologic model GR2M, a monthly time step model, to study the Kouilou-Niari basin, the second most important ones of the Republic of Congo. This includes two parameters to model the hydrologic behavior of a catchment area. The choice of the conceptual model GR2M is justified by the reduced number of parameters and the monthly time scale. The objective of this study is to determine the characteristic parameters of the GR2M model, by a calibrating and a validating procedure. The use of these parameters enables to follow the evolution of the water resources from the climatic variables. It has been first carried out a characterization of some physical, geological and climatic factors governing the flow, by dealing with the main climatic variables which constitute the inputs of the hydrologic model. Then, a hydrologic rainfall-runoff modeling allows to calibrate and validate the model at monthly time scale. Taking into account the number of parameters involved in hydrologic processes and the complexity of the cathment area, this model gives acceptable results throughout the Kouilou-Niari basin. The values of the Nash-Sutcliffe criterion and those of the correlation coefficient obtained are greater than 80% in validation, which explains the performance and robustness of the GR2M model on this basin.
基金partly supported by the French National“Investment for the future”funding programme.
文摘Background: In the context of a nuclear reactor accident, thyroid is the main target organ of radioactive iodines. To avoid as much as possible thyroid disorders or even cancer development, it is recommended to administer a single dose of potassium iodide to people at risk of exposure. Nevertheless, the Fukushima Dai-ichi disaster has pointed out many questions about the conditions of stable iodine prophylaxis implementation highlighting the need for reflection further revision of the actual “iodine doctrine”. Therefore, providing useful data is required notably through the implementation of animal experiments to strengthen current knowledge and to edit new recommendations. Methods: Urinary iodine constitutes a very good indicator to investigate the function of thyroid, its interpretation demands reliable analyses. Prior to perform animal experiments, two calibration methods were designed by our lab and compared together (standard addition and external calibration) to assess the urinary concentration of stable iodine in urine by ICP-MS. They were validated based on several key parameters especially linearity, accuracy and limits of detection (LOD) and quantification (LOQ). Results: The results were nicely satisfying. Indeed, both calibration methods have indicated very good coefficients of correlations, accuracies with low expanded relative uncertainties were obtained. The estimated LOD in the sample for standard addition method and external calibration were fully acceptable, 0.39 μg·L-1 and 0.35 μg·L-1, respectively. All performance criteria have been thus fulfilled successfully. The established methods were proven to be accurate, robust and sensitive. Once validated, both calibration methods were applied to rat urine samples and the results of z-score and Wilcoxon W test concluded that there were no statistically significant differences between both methods.
基金The National Key R&D Program of China under contract Nos 2018YFB0504900 and 2018YFB0504904the National Natural Science Foundation of China under contract Nos 41406204 and 41501417the Operational Support Service System for Natural Resources Satellite Remote Sensing under contract No.180019。
文摘Satellite altimeter needs to be calibrated to evaluate the accuracy of sea surface height data.The dedicated altimeter calibration field needs to establish a special calibration strategy and needs to evaluate its calibration ability.This paper describes absolute calibration of HY-2 B altimeter SSH using the GPS calibration method at the newly Wanshan calibration site,located in the Wanshan Islands,China.There are two HY-2 B altimeter passes across the Wanshan calibration site.Pass No.362 is descending and the ground track passes the east of Dan’gan Island.Pass No.375 is ascending and crosses the Zhiwan Island.The GPS data processing strategy of Wanshan calibration site was established and the accuracy of GPS calibration method of Wanshan calibration site was evaluated.Meanwhile,the processing strategies of the HY-2 B altimeter for the Wanshan calibration site were established,and a dedicated geoid model data were used to benefit the calibration accuracy.The time-averaged HY-2 B altimeter bias was approximately 2.12 cm with a standard deviation of 2.08 cm.The performance of the HY-2 B correction microwave radiometer was also evaluated in terms of the wet troposphere path delay and showed a mean difference-0.2 cm with a 1.4 cm standard deviation with respect to the in situ GPS radiosonde.
文摘The real-time monitoring of environmental radiation dose for nuclear fa-cilities is an important part of safety, in order to guarantee the accuracy of the monitoring results regular calibration is necessary. Around nuclear facilities there are so many environmental dosimeters installed dispers-edly, because of its huge quantity, widely distributed, and in real-time monitoring state;it will cost lots of manpower and finance if it were tak-en to calibrate on standard laboratory;what’s more it will make the en-vironment out of control. To solve the problem of the measurement ac-curacy of the stationary gamma radiation dosimeter, an on-site calibra-tion method is proposed. The radioactive source is X-ray spectrum, and the dose reference instrument which has been calibrated by the national standard laboratory is a high pressure ionization. On-site calibration is divided into two parts;firstly the energy response experiment of dosim-eter for high and low energy is done in the laboratory, and the energy response curve is obtained combining with Monte Carlo simulation;sec-ondly experiment is carried out in the field of the measuring dosimeter, and the substitution method to calibrate the dosimeter is used;finally the calibration coefficient is gotten through energy curve correction. In order to verify the accuracy of on-site calibration method, the calibrated dosimeter is test in the standard laboratory and the error is 3.4%. The re-sult shows that the on-site calibration method using X-ray is feasible, and it can improves the accuracy of the measurement results of the stationary γ-ray instrument;what’s more important is that it has great reference value for the radiation safety management and radiation environment evaluation.
文摘Validity of CA-Markov in land use and cover change simulation was investigated at the Langat Basin, Selangor, Malaysia. CA-Markov validation was performed using validation metrics, allocation disagreement, quantity disagreement, and figure of merit in a three-dimensional space. The figure of merit, quantity error, and allocation error for total landscape simulation using the 1990-1997 calibration data were 5.62%, 3.53%, and 6.13%, respectively. CA-Markov showed a poor performance for land use and cover change simulation due to uncertainties in the source data, the model, and future land use and cover change processes in the study area.
基金Funed by the Europeans Community’s Seventh Framework Program(FP7/2007-2013) (No. SCP-GA-2008-218747)
文摘The paper presented first results elaborated during the European Research Project Re-road which aims at the development of techniques for increasing the recycling rates of reclaimed asphalt. During service life surface asphalt courses are subjected to aging due to oxidation effects which causes the hardening of the binder and thereby a change in the chemical, physical and mechanical properties of the material. Surface courses often contain highly modified binders as well as special additives for improving the performance characteristics. As these layers inhibit the shortest service lives compared to other road construction layers every year high amounts of reclaimed surface asphalt are available for recycling. The question is raised how the reclaimed asphalt consisting of high quality and costly material components can be recycled for optimal added value. To analyze the asphalt mix service life performance and its recyclability during mix design a laboratory method was developed to simulate the real in-situ aging. First the effects of site aging on the binder and asphalt characteristics were presented. Three laboratory aging methods were discussed which aimed the accelerated aging which meets similar property changes as site aging. At last the effects of two different laboratory aging methods on the same SMA mixture were compared.
文摘Channel roughness is a sensitive parameter in development of hydraulic model for flood forecasting and flood inundation mapping. The requirement of multiple channel roughness coefficient Mannnig’s ‘n’ values along the river has been spelled out through simulation of floods, using HEC-RAS, for years 1998 and 2003, supported with the photographs of river reaches collected during the field visit of the lower Tapi River. The calibrated model, in terms of channel roughness, has been used to simulate the flood for year 2006 in the river. The performance of the calibrated HEC-RAS based model has been accessed by capturing the flood peaks of observed and simulated floods;and computation of root mean squared error (RMSE) for the intermediated gauging stations on the lower Tapi River.
基金The National Key R&D Program of China under contract No.2017YFC1405600the National Natural Science Foundation of China under contract Nos 61931025,41974144 and 41976173+1 种基金the Graduate Innovation Project of China University of Petroleum(East China)under contract No.YCX2021124the Shandong Provincial Natural Science Foundation of China under contract No.ZR2019MD016。
文摘The significant wave height(SWH)is one of the main parameters that describe wave characteristics and is widely used in wave research fields.Wave parameters measured by radar are influenced by the offshore distance and sea state.Validation and calibration are of great significance for radar data applications.The nadir beam of surface wave investigation and monitoring(SWIM)detects the global-ocean-surface SWH.To determine the product quality of SWIM SWH,this paper carried out time-space matching between SWIM and buoy data.The data qualities were evaluated under different offshore distances and sea states.An improved calibration method was proposed based on sea state segmentation,which considered the distribution of the point collocation numbers in various sea states.The results indicate that(1)the SWIM SWH accuracy at offshore distances greater than 50 km is higher than that at distances less than 50 km,with an root mean squared error(RMSE)of 0.2444 m,scatter index(SI)of 0.1156 and relative error(RE)of 9.97%at distances greater than 50 km and those of 0.4460 m,0.2230 and18.66%at distances less than 50 km.(2)SWIM SWH qualities are better in moderate and rough sea states with RMSEs of 0.2848 m and 0.3169 m but are worse in slight and very rough sea states.(3)The effect of the improved calibration method is superior to the traditional method in each sea state and overall data,and the RMSE of SWIM SWH is reduced from the raw 0.3135 m to 0.2859 m by the traditional method and 0.1982 m by the improved method.The influence of spatiotemporal window selection on data quality evaluation was analyzed in this paper.This paper provides references for SWIM SWH product applications.
文摘Channel roughness is the most sensitive parameter in development of hydraulic model for flood forecasting and flood plane mapping. Hence, in the present study it is attempted to calibrate the channel roughness coefficient (Manning’s “n” value) along the river Mahanadi, Odisha through simulation of floods using HEC-RAS. For calibration of Manning’s “n” value the flood of year 2003 has been considered. The calibrated model, in terms of channel roughness, has been used to simulate the flood for year 2006 in the same river reach. The performance of the calibrated and validated HEC-RAS based model is tested using Nash and Sutcliffe efficiency. It is concluded from the simulation study that Mannnig’s “n” value of 0.032 gives best result for Khairmal to Munduli reach of Mahanadi River.
文摘The main objective of this paper is to report on preliminary validation results of the newly applied sediment yields estimation model in Tanzania, the Pacific Southwest Inter-Agency Committee (PSIAC). This is a follow-up research on the call to customize simple and/or multi-processes sediment yields estimation models such as PSIAC in the region. The PSIAC approach is based on a sediment yield classification scheme employing individual drainage basin characteristics: surface geology, soils, climate, runoff, topography, ground cover, land use, upland erosion, channel erosion, and sediment transport. In this study, PSIAC model is built from readily available environmental variables sourced from Government ministries/agencies and public domain global spatial data. The sediment classification exercise was verified with field observations. The set up model was then validated by 31 small dams’ siltation surveys and previous sedimentation study findings. PSIAC model performance for major part of central Tanzania was good during calibration (BIAS = 7.88%) and validation (BIAS = 18.12%). Another observation was that uncalibrated model performs fairly well, though performance improves with calibration. The extension of the uncalibrated PSIAC model to 3 selected large basins of Tanzania, with drainage areas size up to 223,000 km2, registered a satisfactory performance in one of them with fair performance in the rest. For large basins, the performance seems to correlate with general ground slope. The higher the slope, the better the performance. It is, however, not apparent from this study on the threshold drainage area and slope requirements for better performance of the model. Notwithstanding, the PSIAC model has improved previous sediment yields estimates based on simple regressive models. Finally, the paper proposes two main further research works: use of high resolution geospatial data and additional validation dams siltation data even beyond the central part of Tanzania, and carries out rigorous study on spatial scale model application limitations.
文摘Models are tools widely used in the prediction of hydrological phenomena. The present study aims to contribute to the implementation of an automatic optimization strategy of parameters for the calibration of a hydrological model based on the least action principle (HyMoLAP). The Downhill Simplex method is also known as the Nelder-Mead algorithm, which is a heuristic research method, is used to optimize the cost function on a given domain. The performance of the model is evaluated by the Nash Stucliffe Efficiency Index (NSE), the Root Mean Square Error (RMSE), the coefficient of determination (R2), the Mean Absolute Error (MAE). A comparative estimation is conducted using the Nash-Sutcliffe Modeling Efficiency Index and the mean relative error to evaluate the performance of the optimization method. It appears that the variation in water balance parameter values is acceptable. The simulated optimization method appears to be the best in terms of lower variability of parameter values during successive tests. The quality of the parameter sets obtained is good enough to impact the performance of the objective functions in a minimum number of iterations. We have analyzed the algorithm from a technical point of view, and we have carried out an experimental comparison between specific factors such as the model structure and the parameter’s values. The results obtained confirm the quality of the model (NSE = 0.90 and 0.75 respectively in calibration and validation) and allow us to evaluate the efficiency of the Nelder-Mead algorithm in the automatic calibration of the HyMoLAP model. The developed hybrid automatic calibration approach is therefore one of the promising ways to reduce computational time in rainfall-runoff modeling.
基金National Natural Science Foundation of China under Grant No.52078020。
文摘When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites,and a valid numerical model was obtained through simulation model test.Finally,the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures.The key findings are as follows.The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure.When a liquefiable layer exists in the middle of the structure,the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer.The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site.The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site.
基金supported by the International Science and Technology Cooperation Program of China(Grant No.2008DFA21540)the National Hi-Tech Research and Development Program of China(Grant No.2006AA12Z113)+1 种基金the Chinese Defense Advance Research Program of Science and Technologythe Young Talents Filed Special Project of Institute of Remote Sensing and Application of Chinese Academy of Sciences
文摘Calibration coefficients validation is the foundation for ascertaining the sensor performance and carrying out the quantitative application.Based on the analysis of the differences between the calibration and validation,two calibration coefficients validation methods were introduced in this paper.Taking the HJ-1A satellite CCD1 camera as an example,the uncertainties of calibration coefficients validation were analyzed.The calibration coefficients validation errors were simulated based on the measured data at an Inner Mongolia test site.The result showed that in the large view angle,the ground directional reflectance variation and the atmospheric path variation were the main error sources in calibration coefficients validation.The ground directional reflectance correction and atmospheric observation angle normalization should be carried out to improve the validation accuracy of calibration coefficients.
基金Acknowledgements The research was funded by National Natural Science Foundation of China (Grant No. 51579011), National Science Foundation for Innovative Research Group (No. 51421065) and State Key Program of National Natural Science of China (Grant No. 41530635).
文摘An essential task in evaluating global water resource and pollution problems is to obtain the optimum set of parameters in hydrological models through calibra- tion and validation. For a large-scale watershed, single-site calibration and validation may ignore spatial heterogeneity and may not meet the needs of the entire watershed. The goal of this study is to apply a multi-site calibration and validation of the Soil and Water Assessment Tool (SWAT), using the observed flow data at three monitoring sites within the Baihe watershed of the Miyun Reservoir watershed, China. Our results indicate that the multi-site calibration parameter values are more reasonable than those obtained from single-site calibrations. These results are mainly due to significant differences in the topographic factors over the large-scale area, human activities and climate variability. The multi-site method involves the division of the large watershed into smaller watersheds, and applying the calibrated parameters of the multi-site calibration to the entire watershed. It was anticipated that this case study could provide experience of multi-site calibration in a large-scale basin, and provide a good foundation for the simulation of other pollutants in follow- up work in the Miyun Reservoir watershed and other similar large areas.
基金supported by the International Science and Technology Cooperation Program of China (Grant No 2008DFA21540)the Chinese Defence Advance Research Program of Science and Technology (Grant No 07K00100KJ) the National Hi-Tech Research and Development Pro-gram of China ("863" Project)
文摘The calibration experiment data at Dunhuang radiometric calibration site in October, 2008 were used to achieve the on-orbit radiometric calibration for HJ-1A hyper spectral imager (HSI). Two other field experiments data were used to validate the Dunhuang calibration results. One field experiment took place in Inner-Mongolia, China in September, 2008, and the other field experiment took place in Lake Frome, Australia in February, 2009. Finally, the ‘confidence interval of calibration error’ concept was put forward for quantitatively computing the calibration coefficient error confidence interval. The results showed that the Dunhuang calibration results in 2008 had high reliability. The confidence intervals of calibration error for all HSI channels were between 2% to 12%, which could satisfy the requirement of the HSI quantitative applications.