There is a problem of unfairness in allocation of radio resources among heterogeneous mobile terminals in heterogeneous wireless networks. Low-capability mobile terminals (such as single-mode terminals) suffer high ca...There is a problem of unfairness in allocation of radio resources among heterogeneous mobile terminals in heterogeneous wireless networks. Low-capability mobile terminals (such as single-mode terminals) suffer high call blocking probability whereas high-capability mobile terminals (such as quad-mode terminals) experience very low call blocking probability, in the same heterogeneous wireless network. This paper proposes a Terminal-Modality-Based Joint Call Admission Control (TJCAC) algorithm to reduce this problem of unfairness. The proposed TJCAC algorithm makes call admission decisions based on mobile terminal modality (capability), network load, and radio access technology (RAT) terminal support index. The objectives of the proposed TJCAC algorithm are to reduce call blocking/dropping probability, and ensure fairness in allocation of radio resources among heterogeneous mobile terminals in heterogeneous networks. An analytical model is developed to evaluate the performance of the proposed TJCAC scheme in terms of call blocking/dropping probability in a heterogeneous wireless network. The performance of the proposed TJCAC algorithm is compared with that of other JCAC algorithms. Results show that the proposed algorithm reduces call blocking/dropping probability in the networks, and ensure fairness in allocation of radio resources among heterogeneous terminals.展开更多
Call Admission Control (CAC) is one of the key traffic management mechanisms that must be deployed in order to meet the strict requirements for dependability imposed on the services provided by modern wireless network...Call Admission Control (CAC) is one of the key traffic management mechanisms that must be deployed in order to meet the strict requirements for dependability imposed on the services provided by modern wireless networks. In this paper, we develop an executable top-down hierarchical Colored Petri Net (CPN) model for multi-traffic CAC in Orthogonal Frequency Division Multiple Access (OFDMA) system. By theoretic analysis and CPN simulation, it is demonstrated that the CPN model is isomorphic to Markov Chain (MC) assuming that each data stream follows Poisson distribution and the corresponding arrival time interval is an exponential random variable, and it breaks through MC's explicit limitation, which includes MC's memoryless property and proneness to state space explosion in evaluating CAC process. Moreover, we present four CAC schemes based on CPN model taking into account call-level and packet-level Quality of Service (QoS). The simulation results show that CPN offers significant advantages over MC in modeling CAC strategies and evaluating their performance with less computational complexity in addition to its flexibility and adaptability to different scenarios.展开更多
文摘There is a problem of unfairness in allocation of radio resources among heterogeneous mobile terminals in heterogeneous wireless networks. Low-capability mobile terminals (such as single-mode terminals) suffer high call blocking probability whereas high-capability mobile terminals (such as quad-mode terminals) experience very low call blocking probability, in the same heterogeneous wireless network. This paper proposes a Terminal-Modality-Based Joint Call Admission Control (TJCAC) algorithm to reduce this problem of unfairness. The proposed TJCAC algorithm makes call admission decisions based on mobile terminal modality (capability), network load, and radio access technology (RAT) terminal support index. The objectives of the proposed TJCAC algorithm are to reduce call blocking/dropping probability, and ensure fairness in allocation of radio resources among heterogeneous mobile terminals in heterogeneous networks. An analytical model is developed to evaluate the performance of the proposed TJCAC scheme in terms of call blocking/dropping probability in a heterogeneous wireless network. The performance of the proposed TJCAC algorithm is compared with that of other JCAC algorithms. Results show that the proposed algorithm reduces call blocking/dropping probability in the networks, and ensure fairness in allocation of radio resources among heterogeneous terminals.
基金Supported by the National Natural Science Foundation of China (No. 61271421)the Education Department of Henan Province (No. 2011GGJS-002 and No. 12A510023)
文摘Call Admission Control (CAC) is one of the key traffic management mechanisms that must be deployed in order to meet the strict requirements for dependability imposed on the services provided by modern wireless networks. In this paper, we develop an executable top-down hierarchical Colored Petri Net (CPN) model for multi-traffic CAC in Orthogonal Frequency Division Multiple Access (OFDMA) system. By theoretic analysis and CPN simulation, it is demonstrated that the CPN model is isomorphic to Markov Chain (MC) assuming that each data stream follows Poisson distribution and the corresponding arrival time interval is an exponential random variable, and it breaks through MC's explicit limitation, which includes MC's memoryless property and proneness to state space explosion in evaluating CAC process. Moreover, we present four CAC schemes based on CPN model taking into account call-level and packet-level Quality of Service (QoS). The simulation results show that CPN offers significant advantages over MC in modeling CAC strategies and evaluating their performance with less computational complexity in addition to its flexibility and adaptability to different scenarios.