期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多通道结构的卷积神经网络在图像分类中的研究
被引量:
1
1
作者
迟凯
魏书伟
《电子测试》
2022年第8期58-59,57,共3页
为解决传统的卷积神经网络的卷积结构单一、分类精度不佳且模型参数和计算量较大等问题,本文对经典的传统网络Alexnet进行网络结构优化进行多通道改进,构建了Tra-net、Mynet v1、Mynet v2三条不同的网络。将三种不同的卷积神经网络在公...
为解决传统的卷积神经网络的卷积结构单一、分类精度不佳且模型参数和计算量较大等问题,本文对经典的传统网络Alexnet进行网络结构优化进行多通道改进,构建了Tra-net、Mynet v1、Mynet v2三条不同的网络。将三种不同的卷积神经网络在公开数据集Caltech256上进行识别性能测试,其中Mynet v2网络最高识别准确率可达59.56%,且模型缩小至25MB左右。实验结果表明改进后网络Mynet v1、Mynet v2的识别性能均优于传统的神经网络Tra-net,使用瓶颈结构卷积模块的网络在提高识别准确率的同时大幅度降低了网络模型参数。
展开更多
关键词
卷积神经网络
图像分类
瓶颈结构
caltech256
下载PDF
职称材料
题名
基于多通道结构的卷积神经网络在图像分类中的研究
被引量:
1
1
作者
迟凯
魏书伟
机构
青岛恒星科技学院
出处
《电子测试》
2022年第8期58-59,57,共3页
文摘
为解决传统的卷积神经网络的卷积结构单一、分类精度不佳且模型参数和计算量较大等问题,本文对经典的传统网络Alexnet进行网络结构优化进行多通道改进,构建了Tra-net、Mynet v1、Mynet v2三条不同的网络。将三种不同的卷积神经网络在公开数据集Caltech256上进行识别性能测试,其中Mynet v2网络最高识别准确率可达59.56%,且模型缩小至25MB左右。实验结果表明改进后网络Mynet v1、Mynet v2的识别性能均优于传统的神经网络Tra-net,使用瓶颈结构卷积模块的网络在提高识别准确率的同时大幅度降低了网络模型参数。
关键词
卷积神经网络
图像分类
瓶颈结构
caltech256
Keywords
convolutional neural network
Image classification
Bottleneck structure
caltech256
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多通道结构的卷积神经网络在图像分类中的研究
迟凯
魏书伟
《电子测试》
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部