期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Cam加权距离的增量拉普拉斯方法 被引量:2
1
作者 韦立庆 陈秀宏 《计算机工程》 CAS CSCD 北大核心 2011年第22期171-173,共3页
提出一种基于Cam加权距离的增量拉普拉斯方法。对原始数据进行拉普拉斯降维,采用Cam加权距离获得每个添加样本的近邻,由其近邻重构出降维后的插入点,更新近邻发生改变的样本点低维数据。实验结果表明,该方法在数据降维与人脸表情分类方... 提出一种基于Cam加权距离的增量拉普拉斯方法。对原始数据进行拉普拉斯降维,采用Cam加权距离获得每个添加样本的近邻,由其近邻重构出降维后的插入点,更新近邻发生改变的样本点低维数据。实验结果表明,该方法在数据降维与人脸表情分类方面有较好的效果。 展开更多
关键词 特征提取 拉普拉斯算子 cam加权距离 数据降维
下载PDF
高光谱影像的近邻加权拉普拉斯降维方法 被引量:2
2
作者 路易 郭静 于少波 《装备学院学报》 2017年第3期27-31,共5页
针对高光谱影像数据中存在信息冗余和非线性结构的现象,以及数据分布不均匀时拉普拉斯特征映射近邻点选择不恰当的问题,提出了一种基于Cam加权距离的拉普拉斯改进算法,用于高光谱影像数据降维以压缩数据量并提高分类精度。首先对波段分... 针对高光谱影像数据中存在信息冗余和非线性结构的现象,以及数据分布不均匀时拉普拉斯特征映射近邻点选择不恰当的问题,提出了一种基于Cam加权距离的拉普拉斯改进算法,用于高光谱影像数据降维以压缩数据量并提高分类精度。首先对波段分组去除奇异波段,然后用基于Cam加权距离的拉普拉斯特征映射算法对剩余数据降维,最后将结果输入最小距离分类器进行高光谱影像分类。通过Indiana Pines数据集进行验证,实验结果表明:与线性降维主成分分析法和非线性降维拉普拉斯特征映射相比,基于Cam加权距离的拉普拉斯特征映射算法分类精度更高。 展开更多
关键词 cam加权距离 拉普拉斯特征映射 非线性降维 波段选择
下载PDF
基于改进增量LE的压缩机故障特征提取方法 被引量:7
3
作者 许庆诚 胡建中 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第4期791-796,共6页
提高离心压缩机故障特征提取精度对于后续故障诊断具有重要意义。针对传统增量LE算法处理精度差的问题,分析了参数t对传统增量LE算法特征提取精度的影响,提出了一种改进的增量LE算法。该方法将传统的增量LE算法与cam加权距离相结合,在... 提高离心压缩机故障特征提取精度对于后续故障诊断具有重要意义。针对传统增量LE算法处理精度差的问题,分析了参数t对传统增量LE算法特征提取精度的影响,提出了一种改进的增量LE算法。该方法将传统的增量LE算法与cam加权距离相结合,在新增样本点投影过程中通过cam加权距离选取邻域,采用热核形式计算新增样本的权值,由局部保持特性,通过新增样本的近邻来重构其低维嵌入。S-curve仿真数据以及离心压缩机故障数据分析表明:相比于传统的增量LE方法,改进的增量LE方法能有效提高新增故障样本特征提取的精度。 展开更多
关键词 cam加权距离 拉普拉斯特征影射算法 流形学习 增量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部