To address the eccentric error of circular marks in camera calibration,a circle location method based on the invariance of collinear points and pole–polar constraint is proposed in this paper.Firstly,the centers of t...To address the eccentric error of circular marks in camera calibration,a circle location method based on the invariance of collinear points and pole–polar constraint is proposed in this paper.Firstly,the centers of the ellipses are extracted,and the real concentric circle center projection equation is established by exploiting the cross ratio invariance of the collinear points.Subsequently,since the infinite lines passing through the centers of the marks are parallel,the other center projection coordinates are expressed as the solution problem of linear equations.The problem of projection deviation caused by using the center of the ellipse as the real circle center projection is addressed,and the results are utilized as the true image points to achieve the high precision camera calibration.As demonstrated by the simulations and practical experiments,the proposed method performs a better location and calibration performance by achieving the actual center projection of circular marks.The relevant results confirm the precision and robustness of the proposed approach.展开更多
A flexible camera calibration technique using 2D-DLT and bundle adjustment with planar scenes is proposed. The equation of principal line under image coordinate system represented with 2D-DLT parameters is educed usin...A flexible camera calibration technique using 2D-DLT and bundle adjustment with planar scenes is proposed. The equation of principal line under image coordinate system represented with 2D-DLT parameters is educed using the correspondence between collinearity equations and 2D-DLT. A novel algorithm to obtain the initial value of principal point is put forward. Proof of Critical Motion Sequences for calibration is given in detail. The practical decomposition algorithm of exterior parameters using initial values of principal point, focal length and 2D-DLT parameters is discussed elaborately. Planar\|scene camera calibration algorithm with bundle adjustment is addressed. Very good results have been obtained with both computer simulations and real data calibration. The calibration result can be used in some high precision applications, such as reverse engineering and industrial inspection.展开更多
Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human vi...Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human visual inspection is known to be labor intensive,time-consuming,and prone to error.In this study,a computer vision-based fatigue crack detection approach using a short video recorded under live loads by a moving consumer-grade camera is presented.The method detects fatigue crack by tracking surface motion and identifies the differential motion pattern caused by opening and closing of the fatigue crack.However,the global motion introduced by a moving camera in the recorded video is typically far greater than the actual motion associated with fatigue crack opening/closing,leading to false detection results.To overcome the challenge,global motion compensation(GMC)techniques are introduced to compensate for camera-induced movement.In particular,hierarchical model-based motion estimation is adopted for 2D videos with simple geometry and a new method is developed by extending the bundled camera paths approach for 3D videos with complex geometry.The proposed methodology is validated using two laboratory test setups for both in-plane and out-of-plane fatigue cracks.The results confirm the importance of motion compensation for both 2D and 3D videos and demonstrate the effectiveness of the proposed GMC methods as well as the subsequent crack detection algorithm.展开更多
In this paper, a distortion correction method with reduced complexity is proposed. With the singleparameter division model, the initial approximation of distortion parameters and the distortion center can be calibrate...In this paper, a distortion correction method with reduced complexity is proposed. With the singleparameter division model, the initial approximation of distortion parameters and the distortion center can be calibrated. Based on the distance from the image center to the fitting lines of the extracted curves, a bending measurement function with a weighted factor is proposed to optimize the initial value. Simulation and experiments verify the proposed method.展开更多
This paper describes a method for estimating intrinsic and extrinsic parameters of a camera,including horizonal scale factor caused by imperfect match between computer image acquisition hardware and camera hardware,co...This paper describes a method for estimating intrinsic and extrinsic parameters of a camera,including horizonal scale factor caused by imperfect match between computer image acquisition hardware and camera hardware,coordinates of image center(c x ,c y) and lense radical distortion parameter k,which calculates extrinsic parameters by a tetrahedra pose estimation algorithm and then get all other parameters by nonlinear optimization in two steps,and simulations show this method is easy and reliable.展开更多
This paper proposes a novel self-calibration method for a large-FoV(Field-of-View)camera using a real star image.First,based on the classic equisolid-angle projection model and polynomial distortion model,the inclinat...This paper proposes a novel self-calibration method for a large-FoV(Field-of-View)camera using a real star image.First,based on the classic equisolid-angle projection model and polynomial distortion model,the inclination of the optical axis is thoroughly considered with respect to the image plane,and a rigorous imaging model including 8 unknown intrinsic parameters is built.Second,the basic calibration equation based on star vector observations is presented.Third,the partial derivative expressions of all 11 camera parameters for linearizing the calibration equation are deduced in detail,and an iterative solution using the least squares method is given.Furtherly,simulation experiment is designed,results of which shows the new model has a better performance than the old model.At last,three experiments were conducted at night in central China and 671 valid star images were collected.The results indicate that the new method obtains a mean magnitude of reprojection error of 0.251 pixels at a 120°FoV,which improves the calibration accuracy by 38.6%compared with the old calibration model(not considering the inclination of the optical axis).When the FoV drops below 20°,the mean magnitude of the reprojection error decreases to 0.15 pixels for both the new model and the old model.Since stars instead of manual control points are used,the new method can realize self-calibration,which might be significant for the long-duration navigation of vehicles in some unfamiliar or extreme environments,such as those of Mars or Earth’s moon.展开更多
基金supported by the Aerospace Science and Technology Joint Fund(6141B061505)the National Natural Science Foundation of China(61473100).
文摘To address the eccentric error of circular marks in camera calibration,a circle location method based on the invariance of collinear points and pole–polar constraint is proposed in this paper.Firstly,the centers of the ellipses are extracted,and the real concentric circle center projection equation is established by exploiting the cross ratio invariance of the collinear points.Subsequently,since the infinite lines passing through the centers of the marks are parallel,the other center projection coordinates are expressed as the solution problem of linear equations.The problem of projection deviation caused by using the center of the ellipse as the real circle center projection is addressed,and the results are utilized as the true image points to achieve the high precision camera calibration.As demonstrated by the simulations and practical experiments,the proposed method performs a better location and calibration performance by achieving the actual center projection of circular marks.The relevant results confirm the precision and robustness of the proposed approach.
文摘A flexible camera calibration technique using 2D-DLT and bundle adjustment with planar scenes is proposed. The equation of principal line under image coordinate system represented with 2D-DLT parameters is educed using the correspondence between collinearity equations and 2D-DLT. A novel algorithm to obtain the initial value of principal point is put forward. Proof of Critical Motion Sequences for calibration is given in detail. The practical decomposition algorithm of exterior parameters using initial values of principal point, focal length and 2D-DLT parameters is discussed elaborately. Planar\|scene camera calibration algorithm with bundle adjustment is addressed. Very good results have been obtained with both computer simulations and real data calibration. The calibration result can be used in some high precision applications, such as reverse engineering and industrial inspection.
基金NCHRP Project,IDEA 223:Fatigue Crack Inspection using Computer Vision and Augmented Reality。
文摘Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human visual inspection is known to be labor intensive,time-consuming,and prone to error.In this study,a computer vision-based fatigue crack detection approach using a short video recorded under live loads by a moving consumer-grade camera is presented.The method detects fatigue crack by tracking surface motion and identifies the differential motion pattern caused by opening and closing of the fatigue crack.However,the global motion introduced by a moving camera in the recorded video is typically far greater than the actual motion associated with fatigue crack opening/closing,leading to false detection results.To overcome the challenge,global motion compensation(GMC)techniques are introduced to compensate for camera-induced movement.In particular,hierarchical model-based motion estimation is adopted for 2D videos with simple geometry and a new method is developed by extending the bundled camera paths approach for 3D videos with complex geometry.The proposed methodology is validated using two laboratory test setups for both in-plane and out-of-plane fatigue cracks.The results confirm the importance of motion compensation for both 2D and 3D videos and demonstrate the effectiveness of the proposed GMC methods as well as the subsequent crack detection algorithm.
文摘In this paper, a distortion correction method with reduced complexity is proposed. With the singleparameter division model, the initial approximation of distortion parameters and the distortion center can be calibrated. Based on the distance from the image center to the fitting lines of the extracted curves, a bending measurement function with a weighted factor is proposed to optimize the initial value. Simulation and experiments verify the proposed method.
文摘This paper describes a method for estimating intrinsic and extrinsic parameters of a camera,including horizonal scale factor caused by imperfect match between computer image acquisition hardware and camera hardware,coordinates of image center(c x ,c y) and lense radical distortion parameter k,which calculates extrinsic parameters by a tetrahedra pose estimation algorithm and then get all other parameters by nonlinear optimization in two steps,and simulations show this method is easy and reliable.
基金co-supported by the National Natural Science Foundation of China(Nos.42074013 and 41704006)。
文摘This paper proposes a novel self-calibration method for a large-FoV(Field-of-View)camera using a real star image.First,based on the classic equisolid-angle projection model and polynomial distortion model,the inclination of the optical axis is thoroughly considered with respect to the image plane,and a rigorous imaging model including 8 unknown intrinsic parameters is built.Second,the basic calibration equation based on star vector observations is presented.Third,the partial derivative expressions of all 11 camera parameters for linearizing the calibration equation are deduced in detail,and an iterative solution using the least squares method is given.Furtherly,simulation experiment is designed,results of which shows the new model has a better performance than the old model.At last,three experiments were conducted at night in central China and 671 valid star images were collected.The results indicate that the new method obtains a mean magnitude of reprojection error of 0.251 pixels at a 120°FoV,which improves the calibration accuracy by 38.6%compared with the old calibration model(not considering the inclination of the optical axis).When the FoV drops below 20°,the mean magnitude of the reprojection error decreases to 0.15 pixels for both the new model and the old model.Since stars instead of manual control points are used,the new method can realize self-calibration,which might be significant for the long-duration navigation of vehicles in some unfamiliar or extreme environments,such as those of Mars or Earth’s moon.