In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for...In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for the given semigroups and when X is finite set formulas for calculating the number of elements in generating sets are derived.展开更多
Introduction: Cancellation of elective surgery is common in developing countries. This decision is difficult to make as it generates economic and organizational consequences for the healthcare facility and an addition...Introduction: Cancellation of elective surgery is common in developing countries. This decision is difficult to make as it generates economic and organizational consequences for the healthcare facility and an additional source of stress for patients and their caregivers. This study aimed to analyze the various aspects of this medical problem. Patients and Methods: We conducted a prospective and descriptive study over six months (from January 1st, 2017, to June 30th, 2017) at the pediatric surgery department of Aristide Le Dantec University Teaching Hospital in Senegal. Results: Ninety-one cases were collected. The cancellation rate was 20.8%. Infants were affected in 36.3% of cases. Among anesthesiologists, 83.5% were residents, and 16.5% were specialists. Cancellation in nephroblastoma children with an indication for extended nephrectomy represented 15.4% of cases. Concerning reasons for cancellation, comorbidities, dominated by respiratory infections, accounted for 28.5% of cases, patient absences for 24.2%, and issues related to the anesthesiologist for 17.6%. Cancellations were avoidable in 33% of cases. Patients were responsible for cancellation in 37.4% of cases, the healthcare system in 33%, and medical reasons in 29.7%. Conclusion: Our findings suggest that one-third of cancellations could have been avoided with improvements in the healthcare system. Actions should be taken to reduce the cancellation rate in our context.展开更多
Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capa...Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.展开更多
To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interfere...To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interference cancellation with optimal power allocation is proposed.Given that power allocation has a significant impact on BER performance,the optimal power allocation is obtained by minimizing the average BER of NOMA users.According to the allocated powers,successive interference cancellation(SIC)between NOMA users is performed in descending power order.For each user,an iterative soft interference cancellation is performed,and soft symbol probabilities are calculated for soft decision.To improve detection accuracy and without increasing the complexity,the aforementioned algorithm is optimized by adding minimum mean square error(MMSE)signal estimation before detection,and in each iteration soft symbol probabilities are utilized for soft-decision of the current user and also for the update of soft interference of the previous user.Simulation results illustrate that the optimized algorithm i.e.MMSE-IDBSIC significantly outperforms joint multi-user detection and SIC detection by 7.57dB and 8.03dB in terms of BER performance.展开更多
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon...Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.展开更多
This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte...This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.展开更多
Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decis...Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decision for acoustical duct physical scale model. The used decision was found on minimization of acoustical field power transfer function from the beginning of waveguide to their end.展开更多
This paper uses the HS2 extension cancellation in November 2021 as a quasi-experiment to study its impact on house prices and rents in Leeds.Using a DiD approach on repeat sales and monthly rents,I compare property va...This paper uses the HS2 extension cancellation in November 2021 as a quasi-experiment to study its impact on house prices and rents in Leeds.Using a DiD approach on repeat sales and monthly rents,I compare property values near the HS2 station and proposed construction site before and after the announcement.Results show a 3.6%decrease in house prices and a 3.9%decline in rents near the station,while properties near the construction site experienced a 2.4%increase in prices and a 2.1%rise in rents.This is the first paper to analyse the HS2 cancellation effect using panel data methods.展开更多
Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should ...Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.展开更多
We introduce the concepts of unitary, almost unitary and strongly almost unitary subset of an ordered semigroup. For the notions of almost unitary and strongly almost unitary subset of an ordered semigroup, we use the...We introduce the concepts of unitary, almost unitary and strongly almost unitary subset of an ordered semigroup. For the notions of almost unitary and strongly almost unitary subset of an ordered semigroup, we use the notion of translational hull of an ordered semigroup. If (S,⋅,≤) is an ordered semigroup having an element e such that e ≤ e<sup>2</sup> and U is a nonempty subset of S such that u ≤ eu, u ≤ ue for all u ∈ U, we show that U is almost unitary in S if and only if U is unitary in . Also if (S,⋅,≤) is an ordered semigroup, e ∉ S, U is a nonempty subset of S, S<sup>e</sup>:= S ∪ {e} and U<sup>e</sup>:= U ∪ {e}, we give conditions that an (“extension” of S) ordered semigroup and the subset U<sup>e</sup> of S<sup>e</sup> must satisfy in order for U to be almost unitary or strongly almost unitary in S (in case U is strongly almost unitary in S, then the given conditions are equivalent).展开更多
Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exi...Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exist two adjacent vertices x, y, a vertex s∈C(x,y) and a vertex z such that d (s,z) = 3. This paper studies algebraic properties of S with such graphs G = Γ(S), giving some sub-semigroups and ideals of S. It constructs some classes of such semigroup graphs and classifies all semigroup graphs with the property in two cases.展开更多
Most current security and authentication systems are based on personal biometrics.The security problem is a major issue in the field of biometric systems.This is due to the use in databases of the original biometrics....Most current security and authentication systems are based on personal biometrics.The security problem is a major issue in the field of biometric systems.This is due to the use in databases of the original biometrics.Then biometrics will forever be lost if these databases are attacked.Protecting privacy is the most important goal of cancelable biometrics.In order to protect privacy,therefore,cancelable biometrics should be non-invertible in such a way that no information can be inverted from the cancelable biometric templates stored in personal identification/verification databases.One methodology to achieve non-invertibility is the employment of non-invertible transforms.This work suggests an encryption process for cancellable speaker identification using a hybrid encryption system.This system includes the 3D Jigsaw transforms and Fractional Fourier Transform(FrFT).The proposed scheme is compared with the optical Double Random Phase Encoding(DRPE)encryption process.The evaluation of simulation results of cancellable biometrics shows that the algorithm proposed is secure,authoritative,and feasible.The encryption and cancelability effects are good and reveal good performance.Also,it introduces recommended security and robustness levels for its utilization for achieving efficient cancellable biometrics systems.展开更多
When building an adaptive noise cancellation system for wideband acoustic signals, one can meet some difficulties in practical implementation of such a system. The major problem is related to the necessity of using re...When building an adaptive noise cancellation system for wideband acoustic signals, one can meet some difficulties in practical implementation of such a system. The major problem is related to the necessity of using real-time signal generation and processing. In this paper the active noise control system which utilizes adaptation in frequency domain is considered. It is shown that the proposed algorithms simplify practical implementation of a noise cancellation system. The results of computer simulations and prototype experiments show the effectiveness of the proposed methods. .展开更多
BACKGROUND Neglect can be divided into two types using apple cancellation test(apple test):Egocentric neglect(EN)and allocentric neglect(AN).However,in South Korea,apple test results and decision criteria are still la...BACKGROUND Neglect can be divided into two types using apple cancellation test(apple test):Egocentric neglect(EN)and allocentric neglect(AN).However,in South Korea,apple test results and decision criteria are still largely dependent on tests by foreign countries.AIM To establish a new South Korea standard and improve the accuracy of neglect assessment,the apple experiment was standardized in this study.METHODS This study was conducted on 223 healthy subjects for a total of 7 mo from August 2021 to February 2022.Standardization was carried out using the original apple test developed by Bickerton in 2011.In scoring for the apple test,total omission error refers to the number of missed targets(full apple)in the entire test sheet(left,middle,and right area).The score for EN is the difference between the correct number of right area and the correct number of left area(excluding the middle area).For AN,the score is difference between the number of left opening apples and number of right opening apples(including the middle area).Linear regression analysis was used for standardization using the general characteristics of subjects and the results of the apple test.RESULTS The cut-off score,which is the standard value indicating the pathological condition by combining the results of all subjects,is as follows:Total omission error(5),error for EN(2),and error for AN(2).Also,differences in cut-off score according to age were found.CONCLUSION This study will be helpful in facilitating a more accurate differential diagnosis of neglect.展开更多
A recent study demonstrated that in small-scale prepolarized surface nuclear magnetic resonance(SNMR-PP)measurements with a footprint of a few square meters,customized PP switch-off ramps can serve as an efficient exc...A recent study demonstrated that in small-scale prepolarized surface nuclear magnetic resonance(SNMR-PP)measurements with a footprint of a few square meters,customized PP switch-off ramps can serve as an efficient excitation mechanism,eliminating the requirement for a conventional oscillating excitation pulse.This approach enables the detection of short relaxation signals from the unsaturated soil zone and can,therefore,be used to directly provide soil moisture and pore geometry information.Because ultimately such small-scale SNMR-PP setups are intended for a mobile application,it is necessary to develop strategies that allow for speedy measurement progress and do not require noise cancellation protocols based on reference stations.Hence,we developed a new concentric figure-of-eight(cFOE)loop layout that combines the direction independence of a circular loop with the intrinsic noise cancellation properties of a classical FOE-loop.This approach significantly decreases the measurement time because suitable signal-to-noise ratios are reached much faster compared to a classical circular loop and will bring us one step further toward fast and non-invasive soil moisture mapping applications.展开更多
In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously r...In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a semigroup of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we provide some consequences of this study.展开更多
Biometric security is a growing trend,as it supports the authentication of persons using confidential biometric data.Most of the transmitted data in multi-media systems are susceptible to attacks,which affect the secur...Biometric security is a growing trend,as it supports the authentication of persons using confidential biometric data.Most of the transmitted data in multi-media systems are susceptible to attacks,which affect the security of these sys-tems.Biometric systems provide sufficient protection and privacy for users.The recently-introduced cancellable biometric recognition systems have not been investigated in the presence of different types of attacks.In addition,they have not been studied on different and large biometric datasets.Another point that deserves consideration is the hardware implementation of cancellable biometric recognition systems.This paper presents a suggested hybrid cancellable biometric recognition system based on a 3D chaotic cryptosystem.The rationale behind the utilization of the 3D chaotic cryptosystem is to guarantee strong encryption of biometric templates,and hence enhance the security and privacy of users.The suggested cryptosystem adds significant permutation and diffusion to the encrypted biometric templates.We introduce some sort of attack analysis in this paper to prove the robustness of the proposed cryptosystem against attacks.In addition,a Field Programmable Gate Array(FPGA)implementation of the pro-posed system is introduced.The obtained results with the proposed cryptosystem are compared with those of the traditional encryption schemes,such as Double Random Phase Encoding(DRPE)to reveal superiority,and hence high recogni-tion performance of the proposed cancellable biometric recognition system.The obtained results prove that the proposed cryptosystem enhances the security and leads to better efficiency of the cancellable biometric recognition system in the presence of different types of attacks.展开更多
Active noise cancellation has become a prominent feature in contemporary in-ear personal audio devices.However,due to constraints related to component arrangement,power consumption,and manufacturing costs,most commerc...Active noise cancellation has become a prominent feature in contemporary in-ear personal audio devices.However,due to constraints related to component arrangement,power consumption,and manufacturing costs,most commercial products utilize fixed-type controller systems as the basis for their active noise control algorithms.These systems offer robust performance and a straightforward structure,which is achievable with cost-effective digital signal processors.Nonetheless,a major drawback of fixed-type controllers is their inability to adapt to changes in acoustic transfer paths,such as variations in earpiece fitting conditions.Therefore,adaptive-type active noise control systems that employ adaptive digital filters are considered as the alternative.To address the increasing system complexity,design concepts and implementation strategies are discussed with respect to actual hardware limitations.To illustrate these considerations,a case study showcasing the implementation of a filtered-x least mean square-based active noise control algorithm is presented.A commercial evaluation board accommodating a low-cost,fixed-point digital signal processor is used to simplify operation and provide programming access.The earbuds are obtained from a commercial product designed for noise cancellation.This study underscores the importance of addressing hardware constraints when implementing adaptive active noise cancellation,providing valuable insights for real-world applications.展开更多
文摘In this article, we study generating sets of the complete semigroups of binary relations defined by X-semilattices of unions of the class Σ<sub>8</sub>(X, 5). Found uniquely irreducible generating set for the given semigroups and when X is finite set formulas for calculating the number of elements in generating sets are derived.
文摘Introduction: Cancellation of elective surgery is common in developing countries. This decision is difficult to make as it generates economic and organizational consequences for the healthcare facility and an additional source of stress for patients and their caregivers. This study aimed to analyze the various aspects of this medical problem. Patients and Methods: We conducted a prospective and descriptive study over six months (from January 1st, 2017, to June 30th, 2017) at the pediatric surgery department of Aristide Le Dantec University Teaching Hospital in Senegal. Results: Ninety-one cases were collected. The cancellation rate was 20.8%. Infants were affected in 36.3% of cases. Among anesthesiologists, 83.5% were residents, and 16.5% were specialists. Cancellation in nephroblastoma children with an indication for extended nephrectomy represented 15.4% of cases. Concerning reasons for cancellation, comorbidities, dominated by respiratory infections, accounted for 28.5% of cases, patient absences for 24.2%, and issues related to the anesthesiologist for 17.6%. Cancellations were avoidable in 33% of cases. Patients were responsible for cancellation in 37.4% of cases, the healthcare system in 33%, and medical reasons in 29.7%. Conclusion: Our findings suggest that one-third of cancellations could have been avoided with improvements in the healthcare system. Actions should be taken to reduce the cancellation rate in our context.
基金supported in part by the Beijing Natural Science Foundation under Grant No.L202003the National Natural Science Foundation of China under Grant U22B2001 and 62271065the Project of China Railway Corporation under Grant N2022G048.
文摘Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.
基金supported by the National Key Research and Development Program of China(No.2021YFB2900602)the National Natural Science Foundation of China(No.61875230).
文摘To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interference cancellation with optimal power allocation is proposed.Given that power allocation has a significant impact on BER performance,the optimal power allocation is obtained by minimizing the average BER of NOMA users.According to the allocated powers,successive interference cancellation(SIC)between NOMA users is performed in descending power order.For each user,an iterative soft interference cancellation is performed,and soft symbol probabilities are calculated for soft decision.To improve detection accuracy and without increasing the complexity,the aforementioned algorithm is optimized by adding minimum mean square error(MMSE)signal estimation before detection,and in each iteration soft symbol probabilities are utilized for soft-decision of the current user and also for the update of soft interference of the previous user.Simulation results illustrate that the optimized algorithm i.e.MMSE-IDBSIC significantly outperforms joint multi-user detection and SIC detection by 7.57dB and 8.03dB in terms of BER performance.
基金supported by the National Natural Science Foundation of China(62073330)。
文摘Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.
基金supported by the National Key Laboratory of Wireless Communications Foundation,China (IFN20230204)。
文摘This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.
文摘Cybernetic decision variants were analyzed in order to use for physical task of active noise cancelation. 10 dB mean active noise cancellation is demonstrated in two decades frequency band by usage of cybernetic decision for acoustical duct physical scale model. The used decision was found on minimization of acoustical field power transfer function from the beginning of waveguide to their end.
文摘This paper uses the HS2 extension cancellation in November 2021 as a quasi-experiment to study its impact on house prices and rents in Leeds.Using a DiD approach on repeat sales and monthly rents,I compare property values near the HS2 station and proposed construction site before and after the announcement.Results show a 3.6%decrease in house prices and a 3.9%decline in rents near the station,while properties near the construction site experienced a 2.4%increase in prices and a 2.1%rise in rents.This is the first paper to analyse the HS2 cancellation effect using panel data methods.
基金supported in part by the National Natural Science Foundation of China under Grant 62171235 and Grant 62171237in part by the Qinglan Project of Jiangsu Provincein part by the Open Research Foundation of National Mobile Communications Research Laboratory of Southeast University under Grant 2023D01.
文摘Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.
文摘We introduce the concepts of unitary, almost unitary and strongly almost unitary subset of an ordered semigroup. For the notions of almost unitary and strongly almost unitary subset of an ordered semigroup, we use the notion of translational hull of an ordered semigroup. If (S,⋅,≤) is an ordered semigroup having an element e such that e ≤ e<sup>2</sup> and U is a nonempty subset of S such that u ≤ eu, u ≤ ue for all u ∈ U, we show that U is almost unitary in S if and only if U is unitary in . Also if (S,⋅,≤) is an ordered semigroup, e ∉ S, U is a nonempty subset of S, S<sup>e</sup>:= S ∪ {e} and U<sup>e</sup>:= U ∪ {e}, we give conditions that an (“extension” of S) ordered semigroup and the subset U<sup>e</sup> of S<sup>e</sup> must satisfy in order for U to be almost unitary or strongly almost unitary in S (in case U is strongly almost unitary in S, then the given conditions are equivalent).
文摘Let G = Γ(S) be a semigroup graph, i.e., a zero-divisor graph of a semigroup S with zero element 0. For any adjacent vertices x, y in G, denote C(x,y) = {z∈V(G) | N (z) = {x,y}}. Assume that in G there exist two adjacent vertices x, y, a vertex s∈C(x,y) and a vertex z such that d (s,z) = 3. This paper studies algebraic properties of S with such graphs G = Γ(S), giving some sub-semigroups and ideals of S. It constructs some classes of such semigroup graphs and classifies all semigroup graphs with the property in two cases.
文摘Most current security and authentication systems are based on personal biometrics.The security problem is a major issue in the field of biometric systems.This is due to the use in databases of the original biometrics.Then biometrics will forever be lost if these databases are attacked.Protecting privacy is the most important goal of cancelable biometrics.In order to protect privacy,therefore,cancelable biometrics should be non-invertible in such a way that no information can be inverted from the cancelable biometric templates stored in personal identification/verification databases.One methodology to achieve non-invertibility is the employment of non-invertible transforms.This work suggests an encryption process for cancellable speaker identification using a hybrid encryption system.This system includes the 3D Jigsaw transforms and Fractional Fourier Transform(FrFT).The proposed scheme is compared with the optical Double Random Phase Encoding(DRPE)encryption process.The evaluation of simulation results of cancellable biometrics shows that the algorithm proposed is secure,authoritative,and feasible.The encryption and cancelability effects are good and reveal good performance.Also,it introduces recommended security and robustness levels for its utilization for achieving efficient cancellable biometrics systems.
文摘When building an adaptive noise cancellation system for wideband acoustic signals, one can meet some difficulties in practical implementation of such a system. The major problem is related to the necessity of using real-time signal generation and processing. In this paper the active noise control system which utilizes adaptation in frequency domain is considered. It is shown that the proposed algorithms simplify practical implementation of a noise cancellation system. The results of computer simulations and prototype experiments show the effectiveness of the proposed methods. .
基金National Research Foundation of Korea Grant funded by The Korea Government,No.2021R1G1A1093494.
文摘BACKGROUND Neglect can be divided into two types using apple cancellation test(apple test):Egocentric neglect(EN)and allocentric neglect(AN).However,in South Korea,apple test results and decision criteria are still largely dependent on tests by foreign countries.AIM To establish a new South Korea standard and improve the accuracy of neglect assessment,the apple experiment was standardized in this study.METHODS This study was conducted on 223 healthy subjects for a total of 7 mo from August 2021 to February 2022.Standardization was carried out using the original apple test developed by Bickerton in 2011.In scoring for the apple test,total omission error refers to the number of missed targets(full apple)in the entire test sheet(left,middle,and right area).The score for EN is the difference between the correct number of right area and the correct number of left area(excluding the middle area).For AN,the score is difference between the number of left opening apples and number of right opening apples(including the middle area).Linear regression analysis was used for standardization using the general characteristics of subjects and the results of the apple test.RESULTS The cut-off score,which is the standard value indicating the pathological condition by combining the results of all subjects,is as follows:Total omission error(5),error for EN(2),and error for AN(2).Also,differences in cut-off score according to age were found.CONCLUSION This study will be helpful in facilitating a more accurate differential diagnosis of neglect.
基金supported by the German Research Foundation(Deutsche Forschungsgemeinschaft-DFG)under grant MU 3318/4-1.
文摘A recent study demonstrated that in small-scale prepolarized surface nuclear magnetic resonance(SNMR-PP)measurements with a footprint of a few square meters,customized PP switch-off ramps can serve as an efficient excitation mechanism,eliminating the requirement for a conventional oscillating excitation pulse.This approach enables the detection of short relaxation signals from the unsaturated soil zone and can,therefore,be used to directly provide soil moisture and pore geometry information.Because ultimately such small-scale SNMR-PP setups are intended for a mobile application,it is necessary to develop strategies that allow for speedy measurement progress and do not require noise cancellation protocols based on reference stations.Hence,we developed a new concentric figure-of-eight(cFOE)loop layout that combines the direction independence of a circular loop with the intrinsic noise cancellation properties of a classical FOE-loop.This approach significantly decreases the measurement time because suitable signal-to-noise ratios are reached much faster compared to a classical circular loop and will bring us one step further toward fast and non-invasive soil moisture mapping applications.
文摘In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a semigroup of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we provide some consequences of this study.
文摘Biometric security is a growing trend,as it supports the authentication of persons using confidential biometric data.Most of the transmitted data in multi-media systems are susceptible to attacks,which affect the security of these sys-tems.Biometric systems provide sufficient protection and privacy for users.The recently-introduced cancellable biometric recognition systems have not been investigated in the presence of different types of attacks.In addition,they have not been studied on different and large biometric datasets.Another point that deserves consideration is the hardware implementation of cancellable biometric recognition systems.This paper presents a suggested hybrid cancellable biometric recognition system based on a 3D chaotic cryptosystem.The rationale behind the utilization of the 3D chaotic cryptosystem is to guarantee strong encryption of biometric templates,and hence enhance the security and privacy of users.The suggested cryptosystem adds significant permutation and diffusion to the encrypted biometric templates.We introduce some sort of attack analysis in this paper to prove the robustness of the proposed cryptosystem against attacks.In addition,a Field Programmable Gate Array(FPGA)implementation of the pro-posed system is introduced.The obtained results with the proposed cryptosystem are compared with those of the traditional encryption schemes,such as Double Random Phase Encoding(DRPE)to reveal superiority,and hence high recogni-tion performance of the proposed cancellable biometric recognition system.The obtained results prove that the proposed cryptosystem enhances the security and leads to better efficiency of the cancellable biometric recognition system in the presence of different types of attacks.
文摘Active noise cancellation has become a prominent feature in contemporary in-ear personal audio devices.However,due to constraints related to component arrangement,power consumption,and manufacturing costs,most commercial products utilize fixed-type controller systems as the basis for their active noise control algorithms.These systems offer robust performance and a straightforward structure,which is achievable with cost-effective digital signal processors.Nonetheless,a major drawback of fixed-type controllers is their inability to adapt to changes in acoustic transfer paths,such as variations in earpiece fitting conditions.Therefore,adaptive-type active noise control systems that employ adaptive digital filters are considered as the alternative.To address the increasing system complexity,design concepts and implementation strategies are discussed with respect to actual hardware limitations.To illustrate these considerations,a case study showcasing the implementation of a filtered-x least mean square-based active noise control algorithm is presented.A commercial evaluation board accommodating a low-cost,fixed-point digital signal processor is used to simplify operation and provide programming access.The earbuds are obtained from a commercial product designed for noise cancellation.This study underscores the importance of addressing hardware constraints when implementing adaptive active noise cancellation,providing valuable insights for real-world applications.