Precision medicine aims to identify the right drug, for the right patient, at the right dose, at the right time, which is particularly important in cancer therapy. Problems such as the variability of treatment respons...Precision medicine aims to identify the right drug, for the right patient, at the right dose, at the right time, which is particularly important in cancer therapy. Problems such as the variability of treatment response and resistance to medication have been longstanding challenges in oncology, especially for development of new medications. Solid tumors, unlike hematologic malignancies or brain tumors, are remarkably diverse in their cellular origins and developmental timing. The ability of next-generation sequencing(NGS) to analyze the comprehensive landscape of genetic alterations brings promises to diseases that have a highly complex and heterogeneous genetic composition such as cancer. Here we provide an overview of how NGS is able to facilitate precision medicine and change the paradigm of cancer therapy, especially for solid tumors, through technical advancements, molecular diagnosis, response monitoring and clinical trials.展开更多
Pancreatic cancer has a poor prognosis. Current therapies for pancreatic cancer have limited effects. In the past decade, precision medicine has shown great potential for clinical applications. In this review, differe...Pancreatic cancer has a poor prognosis. Current therapies for pancreatic cancer have limited effects. In the past decade, precision medicine has shown great potential for clinical applications. In this review, different strategies for applying precision medicine to the treatment of pancreatic cancer are described.展开更多
Microbiome research has extended into the cancer area in the past decades.Microbes can affect oncogenesis,progression,and treatment response through various mechanisms,including direct regulation and indirect impacts....Microbiome research has extended into the cancer area in the past decades.Microbes can affect oncogenesis,progression,and treatment response through various mechanisms,including direct regulation and indirect impacts.Microbiota-associated detectionmethods and agents have been developed to facilitate cancer diagnosis and therapy.Additionally,the cancermicrobiome has recently been redefined.The identification of intra-tumoral microbes and cancer-related circulating microbial DNA(cmDNA)has promoted novel research in the cancer–microbiome area.In this review,we define the human system of commensal microbes and the cancer microbiome from a brand-new perspective and emphasize the potential value of cmDNA as a promising biomarker in cancer liquid biopsy.We outline all existing studies on the relationship between cmDNA and cancer and the outlook for potential preclinical and clinical applications of cmDNA in cancer precision medicine,as well as critical problems to be overcome in this burgeoning field.展开更多
Circulating cell-free tumor DNA(ctDNA) in the blood is DNA released from apoptotic, circulating, and living tumor cells. ctDNA is about 140 nt in length and has a half-life of about 1.5 h. ctDNA analysis provides a ...Circulating cell-free tumor DNA(ctDNA) in the blood is DNA released from apoptotic, circulating, and living tumor cells. ctDNA is about 140 nt in length and has a half-life of about 1.5 h. ctDNA analysis provides a noninvasive means to assess the genetic profile of cancer in real time. With the advent of molecular technologies, including digital PCR and massively parallel sequencing(MPS), ctDNA analysis has shown promise as a highly sensitive and specific alternative to conventional tissue biopsy in cancer detection, longitudinal monitoring, and precision therapy. This review provides an overview of the latest development in our understanding of the biologic characteristics, detection methodologies, and potential clinical implications of ctDNA, as well as the challenges in translating ctDNA analysis from the research arena to patient care.展开更多
文摘Precision medicine aims to identify the right drug, for the right patient, at the right dose, at the right time, which is particularly important in cancer therapy. Problems such as the variability of treatment response and resistance to medication have been longstanding challenges in oncology, especially for development of new medications. Solid tumors, unlike hematologic malignancies or brain tumors, are remarkably diverse in their cellular origins and developmental timing. The ability of next-generation sequencing(NGS) to analyze the comprehensive landscape of genetic alterations brings promises to diseases that have a highly complex and heterogeneous genetic composition such as cancer. Here we provide an overview of how NGS is able to facilitate precision medicine and change the paradigm of cancer therapy, especially for solid tumors, through technical advancements, molecular diagnosis, response monitoring and clinical trials.
文摘Pancreatic cancer has a poor prognosis. Current therapies for pancreatic cancer have limited effects. In the past decade, precision medicine has shown great potential for clinical applications. In this review, different strategies for applying precision medicine to the treatment of pancreatic cancer are described.
基金Thisworkwas supported by the National Natural Science Foundation Regional Innovation and Development(grant No.U20A20394)the Project of Science and Technology Department of Sichuan Province(grant No.2020YJ0106).
文摘Microbiome research has extended into the cancer area in the past decades.Microbes can affect oncogenesis,progression,and treatment response through various mechanisms,including direct regulation and indirect impacts.Microbiota-associated detectionmethods and agents have been developed to facilitate cancer diagnosis and therapy.Additionally,the cancermicrobiome has recently been redefined.The identification of intra-tumoral microbes and cancer-related circulating microbial DNA(cmDNA)has promoted novel research in the cancer–microbiome area.In this review,we define the human system of commensal microbes and the cancer microbiome from a brand-new perspective and emphasize the potential value of cmDNA as a promising biomarker in cancer liquid biopsy.We outline all existing studies on the relationship between cmDNA and cancer and the outlook for potential preclinical and clinical applications of cmDNA in cancer precision medicine,as well as critical problems to be overcome in this burgeoning field.
文摘Circulating cell-free tumor DNA(ctDNA) in the blood is DNA released from apoptotic, circulating, and living tumor cells. ctDNA is about 140 nt in length and has a half-life of about 1.5 h. ctDNA analysis provides a noninvasive means to assess the genetic profile of cancer in real time. With the advent of molecular technologies, including digital PCR and massively parallel sequencing(MPS), ctDNA analysis has shown promise as a highly sensitive and specific alternative to conventional tissue biopsy in cancer detection, longitudinal monitoring, and precision therapy. This review provides an overview of the latest development in our understanding of the biologic characteristics, detection methodologies, and potential clinical implications of ctDNA, as well as the challenges in translating ctDNA analysis from the research arena to patient care.