期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Efficient Algorithm for the k-Means Problem with Must-Link and Cannot-Link Constraints
1
作者 Chaoqi Jia Longkun Guo +1 位作者 Kewen Liao Zhigang Lu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第6期1050-1062,共13页
Constrained clustering,such as k-means with instance-level Must-Link(ML)and Cannot-Link(CL)auxiliary information as the constraints,has been extensively studied recently,due to its broad applications in data science a... Constrained clustering,such as k-means with instance-level Must-Link(ML)and Cannot-Link(CL)auxiliary information as the constraints,has been extensively studied recently,due to its broad applications in data science and AI.Despite some heuristic approaches,there has not been any algorithm providing a non-trivial approximation ratio to the constrained k-means problem.To address this issue,we propose an algorithm with a provable approximation ratio of O(logk)when only ML constraints are considered.We also empirically evaluate the performance of our algorithm on real-world datasets having artificial ML and disjoint CL constraints.The experimental results show that our algorithm outperforms the existing greedy-based heuristic methods in clustering accuracy. 展开更多
关键词 Constrained k-means Must-Link(ML)and cannot-link(CL)constraints approximation algorithm constrained clustering
原文传递
基于约束Laplacian分值的半监督特征选择算法 被引量:4
2
作者 王磊 刘艳 《吉林大学学报(信息科学版)》 CAS 2010年第4期404-409,共6页
针对Laplacian分值法进行特征选择时过分依赖样本局部结构信息的不足,提出一种改进的基于约束Laplacian分值的半监督特征选择算法。该算法利用样本之间的cannot-link成对约束关系作为全局结构信息,在进行特征选择时,不仅能尽量保持局部... 针对Laplacian分值法进行特征选择时过分依赖样本局部结构信息的不足,提出一种改进的基于约束Laplacian分值的半监督特征选择算法。该算法利用样本之间的cannot-link成对约束关系作为全局结构信息,在进行特征选择时,不仅能尽量保持局部结构信息,而且还尽量保持了全局的cannot-link约束关系。基于Yale和PIE(Fave pose,Illamination,Expression dadbase)人脸数据库的实验表明,该算法性能显著优于Laplacian分值法,与Fisher分值法和最新的约束分值法相当,且在稳定性方面优于后者。 展开更多
关键词 特征选择 局部结构信息 cannot-link约束 半监督学习
下载PDF
半监督正则化学习 被引量:2
3
作者 尹学松 胡恩良 《小型微型计算机系统》 CSCD 北大核心 2010年第12期2389-2393,共5页
研究半监督线性维数约减算法.与传统监督维数约减算法不同的是,半监督算法使用辅助信息和大量的无标号样本来达到更好的推广性能.在半监督框架下,本文的目标是学习一个光滑、有判别力的子空间.明确地说,使用cannot-link成对约束来最大... 研究半监督线性维数约减算法.与传统监督维数约减算法不同的是,半监督算法使用辅助信息和大量的无标号样本来达到更好的推广性能.在半监督框架下,本文的目标是学习一个光滑、有判别力的子空间.明确地说,使用cannot-link成对约束来最大化不同类样本之间的距离,使用must-link成对约束来最小化相同类样本之间的距离;同时使用无标号样本的几何结构和投影向量的特征结构作为正则化项来引导维数约减过程.并且,所提出算法能容易处理样本外问题.实验结果验证了新算法的有效性. 展开更多
关键词 半监督正则化 判别分析 特征结构 must-link约束散布 cannot-link约束散布
下载PDF
一种基于密度峰值的半监督聚类算法 被引量:4
4
作者 罗丹 毛先成 邓浩 《地理与地理信息科学》 CSCD 北大核心 2017年第2期69-74,F0003,共7页
由于基于密度峰值的聚类算法对簇的形状不敏感,其聚类结果表现出良好的抗噪性。然而,当密度定义中变量难以反映簇的结构时,该算法性能下降明显,其主要原因在于聚类的非监督性。为此,该文在此算法的基础上提出了一种基于密度峰值的半监... 由于基于密度峰值的聚类算法对簇的形状不敏感,其聚类结果表现出良好的抗噪性。然而,当密度定义中变量难以反映簇的结构时,该算法性能下降明显,其主要原因在于聚类的非监督性。为此,该文在此算法的基础上提出了一种基于密度峰值的半监督聚类算法。该算法通过增加must-link和cannot-link约束作为先验知识,并在must-link约束集中叠加数据点的密度,以此产生新的聚类中心从而实现对数据点的吸引;对于cannot-link约束集中的数据点,通过将其n级最近邻居分离的方式找到其所属聚类中心,实现簇的归属。实验表明,基于密度峰值的半监督聚类算法利用先验知识来约束和引导聚类结果,在一定程度上改善了聚类的效果,并可应用于任意形状数据集的聚类问题中。 展开更多
关键词 密度峰值聚类 must-link约束 cannot-link约束 半监督聚类
下载PDF
Clustering in the presence of side information: a non-linear approach 被引量:1
5
作者 Ahmad Ali Abin 《International Journal of Intelligent Computing and Cybernetics》 EI 2019年第2期292-314,共23页
Purpose–Constrained clustering is an important recent development in clustering literature.The goal of an algorithm in constrained clustering research is to improve the quality of clustering by making use of backgrou... Purpose–Constrained clustering is an important recent development in clustering literature.The goal of an algorithm in constrained clustering research is to improve the quality of clustering by making use of background knowledge.The purpose of this paper is to suggest a new perspective for constrained clustering,by finding an effective transformation of data into target space on the reference of background knowledge given in the form of pairwise must-and cannot-link constraints.Design/methodology/approach–Most of existing methods in constrained clustering are limited to learn a distance metric or kernel matrix from the background knowledge while looking for transformation of data in target space.Unlike previous efforts,the author presents a non-linear method for constraint clustering,whose basic idea is to use different non-linear functions for each dimension in target space.Findings–The outcome of the paper is a novel non-linear method for constrained clustering which uses different non-linearfunctions for each dimension in target space.The proposed method for a particular case is formulated and explained for quadratic functions.To reduce the number of optimization parameters,the proposed method is modified to relax the quadratic function and approximate it by a factorized version that is easier to solve.Experimental results on synthetic and real-world data demonstrate the efficacy of the proposed method.Originality/value–This study proposes a new direction to the problem of constrained clustering by learning a non-linear transformation of data into target space without using kernel functions.This work will assist researchers to start development of new methods based on the proposed framework which will potentially provide them with new research topics. 展开更多
关键词 cannot-link Constrained clustering Instance-level constraints Must-link Quadratic functions Side information
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部