Cross-Project Defect Prediction(CPDP)is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project.However,existing CPDP methods only consi...Cross-Project Defect Prediction(CPDP)is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project.However,existing CPDP methods only consider linear correlations between features(indicators)of the source and target projects.These models are not capable of evaluating non-linear correlations between features when they exist,for example,when there are differences in data distributions between the source and target projects.As a result,the performance of such CPDP models is compromised.In this paper,this paper proposes a novel CPDP method based on Synthetic Minority Oversampling Technique(SMOTE)and Deep Canonical Correlation Analysis(DCCA),referred to as S-DCCA.Canonical Correlation Analysis(CCA)is employed to address the issue of non-linear correlations between features of the source and target projects.S-DCCA extends CCA by incorporating the MlpNet model for feature extraction from the dataset.The redundant features are then eliminated by maximizing the correlated feature subset using the CCA loss function.Finally,cross-project defect prediction is achieved through the application of the SMOTE data sampling technique.Area Under Curve(AUC)and F1 scores(F1)are used as evaluation metrics.This paper conducted experiments on 27 projects from four public datasets to validate the proposed method.The results demonstrate that,on average,our method outperforms all baseline approaches by at least 1.2%in AUC and 5.5%in F1 score.This indicates that the proposed method exhibits favorable performance characteristics.展开更多
[Objective] The study aimed at exploring the relationship among the agronomic characters of B. juncea in western China, in order to provide scientific basis for the breeding of B. juncea in western China. [Method] 39 ...[Objective] The study aimed at exploring the relationship among the agronomic characters of B. juncea in western China, in order to provide scientific basis for the breeding of B. juncea in western China. [Method] 39 B. juncea materials from western China were used for the canonical correlation analysis, and canonical correlations between each pair of the four ecological character (containing 18 variables) were verified, including yield characters (5 variables), caulis characters (6 variables), branch characters (3 variables) and pod characters (3 variables). [Result] Yield per plant of B. juncea in western China suffered a tremendous influence from effective pod number per plant while was not significantly affected by the total pod number per plant, seed number per pod and 1 000-seed weight; the most important character related with the yield character of B. juncea in western China was caulis character, followed by the branch character and pod character; yield characters, caulis characters, branch characters and pod characters of B. juncea in western China were closely correlated. [Conclusion] In order to improve the yield characters of B. juncea in western China, caulis characters should be focused on, followed by branch characters and pod characters; rapeseed varieties with high performance in total pod number per plant and effective pod number per plant should be chosen through the perspectives of effective branch number, plant height, pod number of main inflorescence, fruit stalk number of main inflorescence and other traits, while rapeseed varieties with high performance in seed number per pod and 1 000-seed weight should be chosen through the perspectives of beak length and other traits.展开更多
A novel algorithm for voice conversion is proposed in this paper. The mapping function of spectral vectors of the source and target speakers is calculated by the Canonical Correlation Analysis (CCA) estimation based o...A novel algorithm for voice conversion is proposed in this paper. The mapping function of spectral vectors of the source and target speakers is calculated by the Canonical Correlation Analysis (CCA) estimation based on Gaussian mixture models. Since the spectral envelope feature remains a majority of second order statistical information contained in speech after Linear Prediction Coding (LPC) analysis, the CCA method is more suitable for spectral conversion than Minimum Mean Square Error (MMSE) because CCA explicitly considers the variance of each component of the spectral vectors during conversion procedure. Both objective evaluations and subjective listening tests are conducted. The experimental results demonstrate that the proposed scheme can achieve better per- formance than the previous method which uses MMSE estimation criterion.展开更多
Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information mor...Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information more comprehensively than traditional methods using a single-view.How to use hashing to combine multi-view data for image retrieval is still a challenge.In this paper,a multi-view fusion hashing method based on RKCCA(Random Kernel Canonical Correlation Analysis)is proposed.In order to describe image content more accurately,we use deep learning dense convolutional network feature DenseNet to construct multi-view by combining GIST feature or BoW_SIFT(Bag-of-Words model+SIFT feature)feature.This algorithm uses RKCCA method to fuse multi-view features to construct association features and apply them to image retrieval.The algorithm generates binary hash code with minimal distortion error by designing quantization regularization terms.A large number of experiments on benchmark datasets show that this method is superior to other multi-view hashing methods.展开更多
In order to identify the principal factors influencing soil water characteristics (SWC) and evaluate SWC effectively, the multivariate-statistical canonical correlation analysis (CCA) method was used to study and ...In order to identify the principal factors influencing soil water characteristics (SWC) and evaluate SWC effectively, the multivariate-statistical canonical correlation analysis (CCA) method was used to study and analyze the correlation between SWC and soil physical and chemical properties. Twenty-two soil samples were taken from 11 main tobacco-growing areas in Guizhou Province in China and the soil water characteristic curves (SWCC) and basic physical and chemical properties of the soil samples were determined. The results show that: (1) The soil bulk density, soil total porosity and soil capillary porosity have significant effects on SWC of tobacco fiels. Bulk density and total porosity are positively correlated with soil water retention characteristics (SWRC), and soil capillary porosity is positively correlated with soil water supply characteristics (SWSC). (2) Soil samples from different soil layers at the same soil sampling point show similarity or consistency in SWC. Inadequate soil water supply capability and imbalance between SWRC and SWSC are problems of tobacco soil. (3) The SWC of loamy clay are generally superior to those of silty clay loam.展开更多
Distributed denial of service(DDoS)attacks launch more and more frequently and are more destructive.Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense.Mos...Distributed denial of service(DDoS)attacks launch more and more frequently and are more destructive.Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense.Most DDoS feature extraction methods cannot fully utilize the information of the original data,resulting in the extracted features losing useful features.In this paper,a DDoS feature representation method based on deep belief network(DBN)is proposed.We quantify the original data by the size of the network flows,the distribution of IP addresses and ports,and the diversity of packet sizes of different protocols and train the DBN in an unsupervised manner by these quantified values.Two feedforward neural networks(FFNN)are initialized by the trained deep belief network,and one of the feedforward neural networks continues to be trained in a supervised manner.The canonical correlation analysis(CCA)method is used to fuse the features extracted by two feedforward neural networks per layer.Experiments show that compared with other methods,the proposed method can extract better features.展开更多
By expanding the perturbation of covariance matrix in the powers of er-ror term,the influence functions for five canonical measurements in CCA are devel-oped and three sample versions are given.For generalized correla...By expanding the perturbation of covariance matrix in the powers of er-ror term,the influence functions for five canonical measurements in CCA are devel-oped and three sample versions are given.For generalized correlation coefficient p_z,the influence function is a quadratic form of r.v.z,and its distribution is considered.A practical example iUustrates the utility of the proposed influence functions.展开更多
Canonical correlation analysis ( CCA ) based methods for low-resolution ( LR ) face recognition involve face images with different resolutions ( or multi-resolutions ), i.e.LR and high-resolution ( HR ) .For single-re...Canonical correlation analysis ( CCA ) based methods for low-resolution ( LR ) face recognition involve face images with different resolutions ( or multi-resolutions ), i.e.LR and high-resolution ( HR ) .For single-resolution face recognition , researchers have shown that utilizing spatial information is beneficial to improving the recognition accuracy , mainly because the pixels of each face are not independent but spatially correlated.However , for a multi-resolution scenario , there are no related works.Therefore , a method named spatial regularization of canonical correlation analysis ( SRCCA ) is developed for LR face recognition to improve the performance of CCA by the regularization utilizing spatial information of different resolution faces.Furthermore , the impact of LR and HR spatial regularization terms on LR face recognition is analyzed through experiments.展开更多
In this paper, one of the most classical statistical methods, Canonical Correlation Analysis (CCA) is applied to identify quantitatively the driving forces of landuse structure in Yulin Prefecture. The main analysis i...In this paper, one of the most classical statistical methods, Canonical Correlation Analysis (CCA) is applied to identify quantitatively the driving forces of landuse structure in Yulin Prefecture. The main analysis is carried out through the software SPSS with the data on the level of towns and townships in 1992. The results indicate that landuse structure is determined by comprehensive action of different factors. Landuse structure with rural characteristics is mainly determined by geographical factors such as the elevation, temperature and precipitation, while the landuse structure with urban characteristics is mainly determined by demographic and socioeconomic conditions. At the same time, tests were carried out through the canonical correlation coefficient and redundancy analysis.展开更多
Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters fo...Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation.展开更多
Correlation analysis as used by meteorologists and oceanographers is a tool for the analysisof the spacial or temporal variability of physical fields. In his notes, Dr. Hasselmann pro-posed to combine correlation anal...Correlation analysis as used by meteorologists and oceanographers is a tool for the analysisof the spacial or temporal variability of physical fields. In his notes, Dr. Hasselmann pro-posed to combine correlation analysis and linear regression analysis in climate prediction re-search. The main idea is to decompose the physical field into its principal oscillation patterns.展开更多
To solve the problem of multiple moving sources passive location, a novel blind source separa- tion (BSS) algorithm based on the muhiset canonical correlation analysis (MCCA) is presented by exploiting the differe...To solve the problem of multiple moving sources passive location, a novel blind source separa- tion (BSS) algorithm based on the muhiset canonical correlation analysis (MCCA) is presented by exploiting the different temporal structure of uncorrelated source signals first, and then on the basis of this algorithm, a novel multiple moving sources passive location method is proposed using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The key technique of this location method is TDOA and FDOA joint estimation, which is based on BSS. By blindly separating mixed signals from multiple moving sources, the multiple sources location problem can be translated to each source location in turn, and the effect of interference and noise can also he removed. The simulation results illustrate that the performance of the MCCA algorithm is very good with relatively light computation burden, and the location algorithm is relatively simple and effective.展开更多
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
In standard canonical correlation analysis (CCA), the data from definite datasets are used to estimate their canonical correlation. In real applications, for example in bilingual text retrieval, it may have a great po...In standard canonical correlation analysis (CCA), the data from definite datasets are used to estimate their canonical correlation. In real applications, for example in bilingual text retrieval, it may have a great portion of data that we do not know which set it belongs to. This part of data is called unlabeled data, while the rest from definite datasets is called labeled data. We propose a novel method called regularized canonical correlation analysis (RCCA), which makes use of both labeled and unlabeled samples. Specifically, we learn to approximate canonical correlation as if all data were labeled. Then, we describe a generalization of RCCA for the multi-set situation. Experiments on four real world datasets, Yeast, Cloud, Iris, and Haberman, demonstrate that, by incorporating the unlabeled data points, the accuracy of correlation coefficients can be improved by over 30%.展开更多
In this paper, associations between two sets of random variables based on the projection pursuit (PP) method are studied. The asymptotic normal distributions of estimators of the PP based canonical correlations and we...In this paper, associations between two sets of random variables based on the projection pursuit (PP) method are studied. The asymptotic normal distributions of estimators of the PP based canonical correlations and weighting vectors are derived.展开更多
The impacts of rainfall direction on the degree of hydrological response to rainfall properties were investigated using comparative rainfall-runoff experiments on a small-scale slope(4 m×1 m),as well as canonical...The impacts of rainfall direction on the degree of hydrological response to rainfall properties were investigated using comparative rainfall-runoff experiments on a small-scale slope(4 m×1 m),as well as canonical correlation analysis(CCA).The results of the CCA,based on the observed data showed that,under conditions of both upstream and downstream rainfall movements,the hydrological process can be divided into instantaneous and cumulative responses,for which the driving forces are rainfall intensity and total rainfall,and coupling with splash erosion and wash erosion,respectively.The response of peak runoff(Pr)to intensity-dominated rainfall action appeared to be the most significant,and also runoff(R)to rainfall-dominated action,both for upstream-and downstream-moving conditions.Furthermore,the responses of sediment erosion in downstream-moving condition were more significant than those in upstream-moving condition.This study indicated that a CCA between rainfall and hydrological characteristics is effective for further exploring the rainfall-runoff-erosion mechanism under conditions of moving rainfall,especially for the downstream movement condition.展开更多
基金NationalNatural Science Foundation of China,Grant/AwardNumber:61867004National Natural Science Foundation of China Youth Fund,Grant/Award Number:41801288.
文摘Cross-Project Defect Prediction(CPDP)is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project.However,existing CPDP methods only consider linear correlations between features(indicators)of the source and target projects.These models are not capable of evaluating non-linear correlations between features when they exist,for example,when there are differences in data distributions between the source and target projects.As a result,the performance of such CPDP models is compromised.In this paper,this paper proposes a novel CPDP method based on Synthetic Minority Oversampling Technique(SMOTE)and Deep Canonical Correlation Analysis(DCCA),referred to as S-DCCA.Canonical Correlation Analysis(CCA)is employed to address the issue of non-linear correlations between features of the source and target projects.S-DCCA extends CCA by incorporating the MlpNet model for feature extraction from the dataset.The redundant features are then eliminated by maximizing the correlated feature subset using the CCA loss function.Finally,cross-project defect prediction is achieved through the application of the SMOTE data sampling technique.Area Under Curve(AUC)and F1 scores(F1)are used as evaluation metrics.This paper conducted experiments on 27 projects from four public datasets to validate the proposed method.The results demonstrate that,on average,our method outperforms all baseline approaches by at least 1.2%in AUC and 5.5%in F1 score.This indicates that the proposed method exhibits favorable performance characteristics.
基金Supported by National Natural Science Foundation(30760122)National High-Tech Research and Development Program(863Program)(2009AA101105)+1 种基金Faculty Construction of 211 Project(SZTD-211-02)Project of Introducing Advanced Agricultural Science and Technology of Ministry of Agriculture(948Program)(2010-Z54)~~
文摘[Objective] The study aimed at exploring the relationship among the agronomic characters of B. juncea in western China, in order to provide scientific basis for the breeding of B. juncea in western China. [Method] 39 B. juncea materials from western China were used for the canonical correlation analysis, and canonical correlations between each pair of the four ecological character (containing 18 variables) were verified, including yield characters (5 variables), caulis characters (6 variables), branch characters (3 variables) and pod characters (3 variables). [Result] Yield per plant of B. juncea in western China suffered a tremendous influence from effective pod number per plant while was not significantly affected by the total pod number per plant, seed number per pod and 1 000-seed weight; the most important character related with the yield character of B. juncea in western China was caulis character, followed by the branch character and pod character; yield characters, caulis characters, branch characters and pod characters of B. juncea in western China were closely correlated. [Conclusion] In order to improve the yield characters of B. juncea in western China, caulis characters should be focused on, followed by branch characters and pod characters; rapeseed varieties with high performance in total pod number per plant and effective pod number per plant should be chosen through the perspectives of effective branch number, plant height, pod number of main inflorescence, fruit stalk number of main inflorescence and other traits, while rapeseed varieties with high performance in seed number per pod and 1 000-seed weight should be chosen through the perspectives of beak length and other traits.
文摘A novel algorithm for voice conversion is proposed in this paper. The mapping function of spectral vectors of the source and target speakers is calculated by the Canonical Correlation Analysis (CCA) estimation based on Gaussian mixture models. Since the spectral envelope feature remains a majority of second order statistical information contained in speech after Linear Prediction Coding (LPC) analysis, the CCA method is more suitable for spectral conversion than Minimum Mean Square Error (MMSE) because CCA explicitly considers the variance of each component of the spectral vectors during conversion procedure. Both objective evaluations and subjective listening tests are conducted. The experimental results demonstrate that the proposed scheme can achieve better per- formance than the previous method which uses MMSE estimation criterion.
基金This work is supported by the National Natural Science Foundation of China(No.61772561)the Key Research&Development Plan of Hunan Province(No.2018NK2012)+1 种基金the Science Research Projects of Hunan Provincial Education Department(Nos.18A174,18C0262)the Science&Technology Innovation Platform and Talent Plan of Hunan Province(2017TP1022).
文摘Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information more comprehensively than traditional methods using a single-view.How to use hashing to combine multi-view data for image retrieval is still a challenge.In this paper,a multi-view fusion hashing method based on RKCCA(Random Kernel Canonical Correlation Analysis)is proposed.In order to describe image content more accurately,we use deep learning dense convolutional network feature DenseNet to construct multi-view by combining GIST feature or BoW_SIFT(Bag-of-Words model+SIFT feature)feature.This algorithm uses RKCCA method to fuse multi-view features to construct association features and apply them to image retrieval.The algorithm generates binary hash code with minimal distortion error by designing quantization regularization terms.A large number of experiments on benchmark datasets show that this method is superior to other multi-view hashing methods.
基金supported by the National Key High-Tech Program (863) of China (Grant No. 2006AA10Z271)the Key Project of the Guizhou Tobacco Monopoly Administration (2007-7)
文摘In order to identify the principal factors influencing soil water characteristics (SWC) and evaluate SWC effectively, the multivariate-statistical canonical correlation analysis (CCA) method was used to study and analyze the correlation between SWC and soil physical and chemical properties. Twenty-two soil samples were taken from 11 main tobacco-growing areas in Guizhou Province in China and the soil water characteristic curves (SWCC) and basic physical and chemical properties of the soil samples were determined. The results show that: (1) The soil bulk density, soil total porosity and soil capillary porosity have significant effects on SWC of tobacco fiels. Bulk density and total porosity are positively correlated with soil water retention characteristics (SWRC), and soil capillary porosity is positively correlated with soil water supply characteristics (SWSC). (2) Soil samples from different soil layers at the same soil sampling point show similarity or consistency in SWC. Inadequate soil water supply capability and imbalance between SWRC and SWSC are problems of tobacco soil. (3) The SWC of loamy clay are generally superior to those of silty clay loam.
基金supported by the National Natural Science Foundation of Hainan(2018CXTD333,617048)National Natural Science Foundation of China(61762033,61702539)+4 种基金The National Natural Science Foundation of Hunan(2018JJ3611)Social Development Project of Public Welfare Technology Application of Zhejiang Province(LGF18F020019)Hainan University Doctor Start Fund Project(kyqd1328)Hainan University Youth Fund Project(qnjj1444)State Key Laboratory of Marine Resource Utilization in South China Sea Funding.
文摘Distributed denial of service(DDoS)attacks launch more and more frequently and are more destructive.Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense.Most DDoS feature extraction methods cannot fully utilize the information of the original data,resulting in the extracted features losing useful features.In this paper,a DDoS feature representation method based on deep belief network(DBN)is proposed.We quantify the original data by the size of the network flows,the distribution of IP addresses and ports,and the diversity of packet sizes of different protocols and train the DBN in an unsupervised manner by these quantified values.Two feedforward neural networks(FFNN)are initialized by the trained deep belief network,and one of the feedforward neural networks continues to be trained in a supervised manner.The canonical correlation analysis(CCA)method is used to fuse the features extracted by two feedforward neural networks per layer.Experiments show that compared with other methods,the proposed method can extract better features.
文摘By expanding the perturbation of covariance matrix in the powers of er-ror term,the influence functions for five canonical measurements in CCA are devel-oped and three sample versions are given.For generalized correlation coefficient p_z,the influence function is a quadratic form of r.v.z,and its distribution is considered.A practical example iUustrates the utility of the proposed influence functions.
基金Supported by the National Natural Science Foundation of China(6117015161070133+2 种基金60903130)the Natural Science Research Project of Higher Education of Jiangsu Province(12KJB520018)the Research Foundation of Nanjing University of Aeronautics and Astronautics(NP2011030)
文摘Canonical correlation analysis ( CCA ) based methods for low-resolution ( LR ) face recognition involve face images with different resolutions ( or multi-resolutions ), i.e.LR and high-resolution ( HR ) .For single-resolution face recognition , researchers have shown that utilizing spatial information is beneficial to improving the recognition accuracy , mainly because the pixels of each face are not independent but spatially correlated.However , for a multi-resolution scenario , there are no related works.Therefore , a method named spatial regularization of canonical correlation analysis ( SRCCA ) is developed for LR face recognition to improve the performance of CCA by the regularization utilizing spatial information of different resolution faces.Furthermore , the impact of LR and HR spatial regularization terms on LR face recognition is analyzed through experiments.
文摘In this paper, one of the most classical statistical methods, Canonical Correlation Analysis (CCA) is applied to identify quantitatively the driving forces of landuse structure in Yulin Prefecture. The main analysis is carried out through the software SPSS with the data on the level of towns and townships in 1992. The results indicate that landuse structure is determined by comprehensive action of different factors. Landuse structure with rural characteristics is mainly determined by geographical factors such as the elevation, temperature and precipitation, while the landuse structure with urban characteristics is mainly determined by demographic and socioeconomic conditions. At the same time, tests were carried out through the canonical correlation coefficient and redundancy analysis.
基金Supported by the National High Technology Research and Development Program of China (863 Program,No.2006AA010102)
文摘Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation.
文摘Correlation analysis as used by meteorologists and oceanographers is a tool for the analysisof the spacial or temporal variability of physical fields. In his notes, Dr. Hasselmann pro-posed to combine correlation analysis and linear regression analysis in climate prediction re-search. The main idea is to decompose the physical field into its principal oscillation patterns.
基金Supported by the National High Technology Research and Development Program of China(No.2009AAJ116,2009AAJ208,2010AA7010422)the National Science Foundation for Post-Doctoral Scientists of China(No.20080431379,200902671)the Hubei Natural Science Foundation(No.2009CDB031)
文摘To solve the problem of multiple moving sources passive location, a novel blind source separa- tion (BSS) algorithm based on the muhiset canonical correlation analysis (MCCA) is presented by exploiting the different temporal structure of uncorrelated source signals first, and then on the basis of this algorithm, a novel multiple moving sources passive location method is proposed using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The key technique of this location method is TDOA and FDOA joint estimation, which is based on BSS. By blindly separating mixed signals from multiple moving sources, the multiple sources location problem can be translated to each source location in turn, and the effect of interference and noise can also he removed. The simulation results illustrate that the performance of the MCCA algorithm is very good with relatively light computation burden, and the location algorithm is relatively simple and effective.
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.
基金Project (No. 5959438) supported by Microsoft (China) Co., Ltd
文摘In standard canonical correlation analysis (CCA), the data from definite datasets are used to estimate their canonical correlation. In real applications, for example in bilingual text retrieval, it may have a great portion of data that we do not know which set it belongs to. This part of data is called unlabeled data, while the rest from definite datasets is called labeled data. We propose a novel method called regularized canonical correlation analysis (RCCA), which makes use of both labeled and unlabeled samples. Specifically, we learn to approximate canonical correlation as if all data were labeled. Then, we describe a generalization of RCCA for the multi-set situation. Experiments on four real world datasets, Yeast, Cloud, Iris, and Haberman, demonstrate that, by incorporating the unlabeled data points, the accuracy of correlation coefficients can be improved by over 30%.
基金supported by National Natural Science Foundation of China (Grant Nos.10726013, 10771017, 10901020)
文摘In this paper, associations between two sets of random variables based on the projection pursuit (PP) method are studied. The asymptotic normal distributions of estimators of the PP based canonical correlations and weighting vectors are derived.
基金Project supported by the National Basic Research Program (973) of China (No. 2011CB409901-01)the National Natural Science Foundation of China (No. 4081011)
文摘The impacts of rainfall direction on the degree of hydrological response to rainfall properties were investigated using comparative rainfall-runoff experiments on a small-scale slope(4 m×1 m),as well as canonical correlation analysis(CCA).The results of the CCA,based on the observed data showed that,under conditions of both upstream and downstream rainfall movements,the hydrological process can be divided into instantaneous and cumulative responses,for which the driving forces are rainfall intensity and total rainfall,and coupling with splash erosion and wash erosion,respectively.The response of peak runoff(Pr)to intensity-dominated rainfall action appeared to be the most significant,and also runoff(R)to rainfall-dominated action,both for upstream-and downstream-moving conditions.Furthermore,the responses of sediment erosion in downstream-moving condition were more significant than those in upstream-moving condition.This study indicated that a CCA between rainfall and hydrological characteristics is effective for further exploring the rainfall-runoff-erosion mechanism under conditions of moving rainfall,especially for the downstream movement condition.