This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing...This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing the trilinear PARAFAC model.Relying on the uniqueness of the low-rank three-way array decomposition and the trilinear alternating least squares regression, the proposed algorithm achieves nominal DOA estimation and outperforms the conventional estimation of signal parameter via rotational technique CD(ESPRIT-CD) and propagator method CD(PM-CD)methods in terms of estimation accuracy. Furthermore, by means of the initialization via the propagator method, this paper accelerates the convergence procedure of the proposed algorithm with no estimation performance degradation. In addition, the proposed algorithm can be directly applied to the multiple-source scenario,where sources have different angular distribution shapes. Numerical simulation results corroborate the effectiveness and superiority of the proposed fast PARAFAC-based algorithm.展开更多
In tensor theory, the parallel factorization (PARAFAC)decomposition expresses a tensor as the sum of a set of rank-1tensors. By carrying out this numerical decomposition, mixedsources can be separated or unknown sys...In tensor theory, the parallel factorization (PARAFAC)decomposition expresses a tensor as the sum of a set of rank-1tensors. By carrying out this numerical decomposition, mixedsources can be separated or unknown system parameters can beidentified, which is the so-called blind source separation or blindidentification. In this paper we propose a numerical PARAFACdecomposition algorithm. Compared to traditional algorithms, wespeed up the decomposition in several aspects, i.e., search di-rection by extrapolation, suboptimal step size by Gauss-Newtonapproximation, and linear search by n steps. The algorithm is ap-plied to polarization sensitive array parameter estimation to showits usefulness. Simulations verify the correctness and performanceof the proposed numerical techniques.展开更多
近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket...近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket Augmentation,OKA)和张量列车(Tensor Train,TT)的非平衡频谱制图算法,以解决非平衡张量在应用传统张量补全算法时性能下降的问题.首先使用OKA将低阶高维张量表示为高阶低维张量,在无信息损耗的情况下解决非平衡张量无法利用其低秩性进行张量补全的问题;然后使用TT矩阵化得到较平衡的矩阵,在维度较平衡条件下提高补全算法的精确度;最后利用高阶低维张量的低秩性,使用并行矩阵分解或基于F范数的无奇异值分解(Singular Value Decomposition Free,SVDFree)算法完成张量补全.仿真结果表明,针对非平衡张量,所提方案与现有的张量补全算法相比,可以获得更精确的无线电地图,同时所提SVDFree算法具有更低的计算复杂度.展开更多
针对源信号个数未知的欠定混合盲源分离问题,本文提出了一种基于特征矩阵联合近似对角化(Joint Approximate Diagonalization of Eigenmatrices,JADE)和平行因子分解的欠定混合盲辨识算法,该算法不需要源信号满足稀疏性要求,仅在源信号...针对源信号个数未知的欠定混合盲源分离问题,本文提出了一种基于特征矩阵联合近似对角化(Joint Approximate Diagonalization of Eigenmatrices,JADE)和平行因子分解的欠定混合盲辨识算法,该算法不需要源信号满足稀疏性要求,仅在源信号满足相互独立和最多一个高斯信号的条件下,通过将JADE算法中的样本四阶协方差矩阵叠加成三阶张量,再对此三阶张量进行平行因子分解来完成源信号数和混合矩阵的估计,由于平行因子分解的唯一辨识性在欠定条件下仍然满足,该算法能够解决欠定盲源分离问题。并对该欠定混合盲辨识算法进行了深入的分析。通过仿真实验,计算估计矩阵与混合矩阵的平均相关误差,结果表明本文提出的算法在适定和欠定混合时均具有很好的辨识效果,而且实现简单,可满足实际应用的要求。展开更多
将声矢量传感器阵列参数估计问题与平行因子(Parallel factor,PARAFAC)模型相结合,提出了一种基于快速PARAFAC分解的二维波达方向(Direction of arrival,DOA)估计算法。该算法首先将接收信号构建为PARAFAC模型,然后在数据域对参数矩阵...将声矢量传感器阵列参数估计问题与平行因子(Parallel factor,PARAFAC)模型相结合,提出了一种基于快速PARAFAC分解的二维波达方向(Direction of arrival,DOA)估计算法。该算法首先将接收信号构建为PARAFAC模型,然后在数据域对参数矩阵进行初估计,最后利用PARAFAC分解获得信号二维DOA估计。该算法能够应用于任意结构的声矢量传感器阵列,同时能够得到和信源一一匹配的仰角和方位角估计。借助于参数矩阵的初始估计,所提算法收敛速度较快,其计算复杂度大大降低。该算法角度估计性能接近于PARAFAC算法,同时优于借助旋转不变性进行信号参数估计(Estimation of signal parameters via rotational invariance technique,ESPRIT)算法和传播算子(Propagator method,PM)算法。展开更多
基金supported by the National Natural Science Foundation of China(6137116961601167)+2 种基金the Jiangsu Natural Science Foundation(BK20161489)the open research fund of State Key Laboratory of Millimeter Waves,Southeast University(K201826)the Fundamental Research Funds for the Central Universities(NE2017103)
文摘This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing the trilinear PARAFAC model.Relying on the uniqueness of the low-rank three-way array decomposition and the trilinear alternating least squares regression, the proposed algorithm achieves nominal DOA estimation and outperforms the conventional estimation of signal parameter via rotational technique CD(ESPRIT-CD) and propagator method CD(PM-CD)methods in terms of estimation accuracy. Furthermore, by means of the initialization via the propagator method, this paper accelerates the convergence procedure of the proposed algorithm with no estimation performance degradation. In addition, the proposed algorithm can be directly applied to the multiple-source scenario,where sources have different angular distribution shapes. Numerical simulation results corroborate the effectiveness and superiority of the proposed fast PARAFAC-based algorithm.
基金supported by the National Natural Science Foundation of China(61571131)the Technology Innovation Fund of the 10th Research Institute of China Electronics Technology Group Corporation(H17038.1)
文摘In tensor theory, the parallel factorization (PARAFAC)decomposition expresses a tensor as the sum of a set of rank-1tensors. By carrying out this numerical decomposition, mixedsources can be separated or unknown system parameters can beidentified, which is the so-called blind source separation or blindidentification. In this paper we propose a numerical PARAFACdecomposition algorithm. Compared to traditional algorithms, wespeed up the decomposition in several aspects, i.e., search di-rection by extrapolation, suboptimal step size by Gauss-Newtonapproximation, and linear search by n steps. The algorithm is ap-plied to polarization sensitive array parameter estimation to showits usefulness. Simulations verify the correctness and performanceof the proposed numerical techniques.
文摘近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket Augmentation,OKA)和张量列车(Tensor Train,TT)的非平衡频谱制图算法,以解决非平衡张量在应用传统张量补全算法时性能下降的问题.首先使用OKA将低阶高维张量表示为高阶低维张量,在无信息损耗的情况下解决非平衡张量无法利用其低秩性进行张量补全的问题;然后使用TT矩阵化得到较平衡的矩阵,在维度较平衡条件下提高补全算法的精确度;最后利用高阶低维张量的低秩性,使用并行矩阵分解或基于F范数的无奇异值分解(Singular Value Decomposition Free,SVDFree)算法完成张量补全.仿真结果表明,针对非平衡张量,所提方案与现有的张量补全算法相比,可以获得更精确的无线电地图,同时所提SVDFree算法具有更低的计算复杂度.
文摘针对源信号个数未知的欠定混合盲源分离问题,本文提出了一种基于特征矩阵联合近似对角化(Joint Approximate Diagonalization of Eigenmatrices,JADE)和平行因子分解的欠定混合盲辨识算法,该算法不需要源信号满足稀疏性要求,仅在源信号满足相互独立和最多一个高斯信号的条件下,通过将JADE算法中的样本四阶协方差矩阵叠加成三阶张量,再对此三阶张量进行平行因子分解来完成源信号数和混合矩阵的估计,由于平行因子分解的唯一辨识性在欠定条件下仍然满足,该算法能够解决欠定盲源分离问题。并对该欠定混合盲辨识算法进行了深入的分析。通过仿真实验,计算估计矩阵与混合矩阵的平均相关误差,结果表明本文提出的算法在适定和欠定混合时均具有很好的辨识效果,而且实现简单,可满足实际应用的要求。
文摘将声矢量传感器阵列参数估计问题与平行因子(Parallel factor,PARAFAC)模型相结合,提出了一种基于快速PARAFAC分解的二维波达方向(Direction of arrival,DOA)估计算法。该算法首先将接收信号构建为PARAFAC模型,然后在数据域对参数矩阵进行初估计,最后利用PARAFAC分解获得信号二维DOA估计。该算法能够应用于任意结构的声矢量传感器阵列,同时能够得到和信源一一匹配的仰角和方位角估计。借助于参数矩阵的初始估计,所提算法收敛速度较快,其计算复杂度大大降低。该算法角度估计性能接近于PARAFAC算法,同时优于借助旋转不变性进行信号参数估计(Estimation of signal parameters via rotational invariance technique,ESPRIT)算法和传播算子(Propagator method,PM)算法。
文摘为改善智能反射表面(Intelligent reflective surface,IRS)辅助的毫米波多输入多输出(Multiple⁃input multiple⁃output,MIMO)级联信道的估计精度和收敛速度,基于平行因子(Parallel factor,PARAFAC)分解模型,把常规的双线性交替最小二乘(Bilinear alternating least squares,BALS)算法改进为带松弛因子的ω⁃BALS算法和正则化的T⁃BALS,加快了收敛速度和算法稳定性。当基站、IRS元件或用户侧的阵列天线数目较大时,提出改进的奇异值(Singular value decomposition,svd)⁃BALS算法。该算法通过奇异值分解压缩张量,再利用低维度的核心张量来重构模式n矩阵。仿真结果表明,该算法的归一化均方误差性能有所提高,并且加快了收敛速度。