There are many important concepts in linear algebra, such as linear correlation and linear independence, eigenvalues and eigenvectors, and so on. The article provides a graphical explanation of how to distinguish betw...There are many important concepts in linear algebra, such as linear correlation and linear independence, eigenvalues and eigenvectors, and so on. The article provides a graphical explanation of how to distinguish between the concepts of linear correlation and linear independence. The conclusion points out that linear independence means that there are no two (base) vectors with the same direction in a vector graph;otherwise, it is a linear correlation.展开更多
文摘There are many important concepts in linear algebra, such as linear correlation and linear independence, eigenvalues and eigenvectors, and so on. The article provides a graphical explanation of how to distinguish between the concepts of linear correlation and linear independence. The conclusion points out that linear independence means that there are no two (base) vectors with the same direction in a vector graph;otherwise, it is a linear correlation.