By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive...By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive linear operators. As an example, Hermite Fejér interpolation polynomial operators are analysed and studied, and a general conclusion is obtained.展开更多
Nonlinear approximation is widely used in signal processing. Real-life signals can be modeled as functions of bounded variation. Thus the variable knot of approximating function could be self- adaptively chosen by bal...Nonlinear approximation is widely used in signal processing. Real-life signals can be modeled as functions of bounded variation. Thus the variable knot of approximating function could be self- adaptively chosen by balancing the total variation of the target function. In this paper, we adopt continuous piecewise linear approximation instead of the existing piecewise constants approximation. The results of experiments show that this new method is superior to the old one.展开更多
This paper generalizes the basic principle of multiplier-enlargement approach to approximating any nonbounded continuous functions with positive linear operators, and as an example, Bernstein polynomial operators are ...This paper generalizes the basic principle of multiplier-enlargement approach to approximating any nonbounded continuous functions with positive linear operators, and as an example, Bernstein polynomial operators are analysed and studied. This paper gives a certain theorem as a general rule to approximate any nonbounded continuous functions.展开更多
A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obt...A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obtained. This sufficient condition is shown to be not enough for the order of approximation by partial sums of their Fourier series to be of Jackson order. The error estimate is shown to be the best possible.展开更多
Let f be a function, continuous and real valued on the segment △,△ (-∞,∞) and {Rn} be the sequence of the rational functions of best uniform approximation to fon △ of order (n,n). In the present work, the converg...Let f be a function, continuous and real valued on the segment △,△ (-∞,∞) and {Rn} be the sequence of the rational functions of best uniform approximation to fon △ of order (n,n). In the present work, the convergence of {Rn} in the complex plane is considered for the special caseswhen the poles (or the zeros, respectively) of {Rn} accumulate in the terms of weak convergence of measures to acompact set of zera capacity.As a consequence, sufficient conditions for the holomorphic and the meromorphic continuability of fare given.展开更多
In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equat...In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equation of partitions of unity for the hyperbolic tangent function is given. Then, two kinds of quasi-interpolation type neural network operators are con- structed to approximate univariate and bivariate functions, respectively. Also, the errors of the approximation are estimated by means of the modulus of continuity of function. Moreover, for approximated functions with high order derivatives, the approximation errors of the constructed operators are estimated.展开更多
Let L^2([0, 1], x) be the space of the real valued, measurable, square summable functions on [0, 1] with weight x, and let n be the subspace of L2([0, 1], x) defined by a linear combination of Jo(μkX), where J...Let L^2([0, 1], x) be the space of the real valued, measurable, square summable functions on [0, 1] with weight x, and let n be the subspace of L2([0, 1], x) defined by a linear combination of Jo(μkX), where Jo is the Bessel function of order 0 and {μk} is the strictly increasing sequence of all positive zeros of Jo. For f ∈ L^2([0, 1], x), let E(f, n) be the error of the best L2([0, 1], x), i.e., approximation of f by elements of n. The shift operator off at point x ∈[0, 1] with step t ∈[0, 1] is defined by T(t)f(x)=1/π∫0^π f(√x^2 +t^2-2xtcosO)dθ The differences (I- T(t))^r/2f = ∑j=0^∞(-1)^j(j^r/2)T^j(t)f of order r ∈ (0, ∞) and the L^2([0, 1],x)- modulus of continuity ωr(f,τ) = sup{||(I- T(t))^r/2f||:0≤ t ≤τ] of order r are defined in the standard way, where T^0(t) = I is the identity operator. In this paper, we establish the sharp Jackson inequality between E(f, n) and ωr(f, τ) for some cases of r and τ. More precisely, we will find the smallest constant n(τ, r) which depends only on n, r, and % such that the inequality E(f, n)≤ n(τ, r)ωr(f, τ) is valid.展开更多
The concept of convex type function is introduced in this paper,from which a kin d of convex decomposition approach is proposed.As one of applications of this a pproach,the approximation of the convex type function b...The concept of convex type function is introduced in this paper,from which a kin d of convex decomposition approach is proposed.As one of applications of this a pproach,the approximation of the convex type function by the partial sum of its Fourier series is inves tigated.Moreover,the order of approximation is describe d with the 2th continuous modulus.展开更多
Let (Ω, A, P) be a probability space, X(t, ω) a random function continuous in probability for t∈[0,+∞) or (-∞,+∞)(ω∈Ω), and F(t) a positive function continuous for t∈[0,+∞) or (-∞, +∞). If X(t, ω) and F(...Let (Ω, A, P) be a probability space, X(t, ω) a random function continuous in probability for t∈[0,+∞) or (-∞,+∞)(ω∈Ω), and F(t) a positive function continuous for t∈[0,+∞) or (-∞, +∞). If X(t, ω) and F(t) verify certain conditions, then there exists a sequence {Qn(t,ω)} of random polynomials such that we have almost surely: for t∈[0,+∞) or (-∞, +∞), lim|X(t, ω)-Qn(t, ω)|/F(t)=0.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
In order to study the approximation by reciprocals of polynomials with real coefficients, one always assumes that the approximated function has a fixed sign on the given interval. Sometimes, the approximated function ...In order to study the approximation by reciprocals of polynomials with real coefficients, one always assumes that the approximated function has a fixed sign on the given interval. Sometimes, the approximated function is permitted to have finite sign changes, such as l(l ≥ 1) times. Zhou Songping has studied the case l=1 and l≥2 in L^p spaces in order of priority. In this paper, we studied the case l ≥2 in Orlicz spaces by using the function extend, modified Jackson kernel, Hardy-Littlewood maximal function, Cauchy-Schwarz inequality, and obtained the Jackson type estimation.展开更多
We consider Jackson inequality in L^2 (B^d×T, Wκ,μ^B (x)), where the weight function Wκ,μ^B (X) is defined on the ball B^d and related to reflection group, and obtain the sharp Jackson inequalityEn-1,m-...We consider Jackson inequality in L^2 (B^d×T, Wκ,μ^B (x)), where the weight function Wκ,μ^B (X) is defined on the ball B^d and related to reflection group, and obtain the sharp Jackson inequalityEn-1,m-1(f)2≤κn,m(τ,r)ωr(f,t)2,τ≥2τn,λ,where Tn,λ is the first positive zero of the Gegenbauer cosine polynomial Cn^λ (cos θ)(n ∈ N).展开更多
In this paper, we investigate the selection rule for desalinating seawater using functionalized graphene sheet as a semi-permissible membrane. Both the applied mathematical modeling and MD simulations will be used to ...In this paper, we investigate the selection rule for desalinating seawater using functionalized graphene sheet as a semi-permissible membrane. Both the applied mathematical modeling and MD simulations will be used to determine the acceptance conditions for water molecule or sodium ion permeating into the functionalized graphene. Both the Lennard-Jones potential and Coulomb forces are considered by taking into accounts the major molecular and ionic interactions between molecules, ions and functionalized graphene sheet. The continuous approximation will then be used to coarse grain most significant molecular and ionic interactions so that the multi-body problems could be simplified into several two-body problems and the 3D motions are reduced into degenerated 1D motion. Our mathematical model and simulations show that the negatively charged graphene always accepts sodium ions and water;however the permeability of water molecules and sodium ions becomes very sensitive to the presence of positive charges on the graphene.展开更多
文摘By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive linear operators. As an example, Hermite Fejér interpolation polynomial operators are analysed and studied, and a general conclusion is obtained.
文摘Nonlinear approximation is widely used in signal processing. Real-life signals can be modeled as functions of bounded variation. Thus the variable knot of approximating function could be self- adaptively chosen by balancing the total variation of the target function. In this paper, we adopt continuous piecewise linear approximation instead of the existing piecewise constants approximation. The results of experiments show that this new method is superior to the old one.
文摘This paper generalizes the basic principle of multiplier-enlargement approach to approximating any nonbounded continuous functions with positive linear operators, and as an example, Bernstein polynomial operators are analysed and studied. This paper gives a certain theorem as a general rule to approximate any nonbounded continuous functions.
文摘A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obtained. This sufficient condition is shown to be not enough for the order of approximation by partial sums of their Fourier series to be of Jackson order. The error estimate is shown to be the best possible.
基金The work is supported by Project 69 with Ministry of ScienceEducation, Bulgaria.
文摘Let f be a function, continuous and real valued on the segment △,△ (-∞,∞) and {Rn} be the sequence of the rational functions of best uniform approximation to fon △ of order (n,n). In the present work, the convergence of {Rn} in the complex plane is considered for the special caseswhen the poles (or the zeros, respectively) of {Rn} accumulate in the terms of weak convergence of measures to acompact set of zera capacity.As a consequence, sufficient conditions for the holomorphic and the meromorphic continuability of fare given.
基金Supported by the National Natural Science Foundation of China(61179041,61272023,and 11401388)
文摘In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equation of partitions of unity for the hyperbolic tangent function is given. Then, two kinds of quasi-interpolation type neural network operators are con- structed to approximate univariate and bivariate functions, respectively. Also, the errors of the approximation are estimated by means of the modulus of continuity of function. Moreover, for approximated functions with high order derivatives, the approximation errors of the constructed operators are estimated.
基金supported partly by National Natural Science Foundation of China (No.10471010)partly by the project"Representation Theory and Related Topics"of the"985 Program"of Beijing Normal University and Beijing Natural Science Foundation (1062004).
文摘Let L^2([0, 1], x) be the space of the real valued, measurable, square summable functions on [0, 1] with weight x, and let n be the subspace of L2([0, 1], x) defined by a linear combination of Jo(μkX), where Jo is the Bessel function of order 0 and {μk} is the strictly increasing sequence of all positive zeros of Jo. For f ∈ L^2([0, 1], x), let E(f, n) be the error of the best L2([0, 1], x), i.e., approximation of f by elements of n. The shift operator off at point x ∈[0, 1] with step t ∈[0, 1] is defined by T(t)f(x)=1/π∫0^π f(√x^2 +t^2-2xtcosO)dθ The differences (I- T(t))^r/2f = ∑j=0^∞(-1)^j(j^r/2)T^j(t)f of order r ∈ (0, ∞) and the L^2([0, 1],x)- modulus of continuity ωr(f,τ) = sup{||(I- T(t))^r/2f||:0≤ t ≤τ] of order r are defined in the standard way, where T^0(t) = I is the identity operator. In this paper, we establish the sharp Jackson inequality between E(f, n) and ωr(f, τ) for some cases of r and τ. More precisely, we will find the smallest constant n(τ, r) which depends only on n, r, and % such that the inequality E(f, n)≤ n(τ, r)ωr(f, τ) is valid.
基金supported by the Ningbo Youth Foundation(0 2 J0 1 0 2 - 2 1 )
文摘The concept of convex type function is introduced in this paper,from which a kin d of convex decomposition approach is proposed.As one of applications of this a pproach,the approximation of the convex type function by the partial sum of its Fourier series is inves tigated.Moreover,the order of approximation is describe d with the 2th continuous modulus.
文摘Let (Ω, A, P) be a probability space, X(t, ω) a random function continuous in probability for t∈[0,+∞) or (-∞,+∞)(ω∈Ω), and F(t) a positive function continuous for t∈[0,+∞) or (-∞, +∞). If X(t, ω) and F(t) verify certain conditions, then there exists a sequence {Qn(t,ω)} of random polynomials such that we have almost surely: for t∈[0,+∞) or (-∞, +∞), lim|X(t, ω)-Qn(t, ω)|/F(t)=0.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
基金supported by the National Natural Science Foundation of China (11161033)the Personnel Train Engineering Foundation of Inner Mongolia Normal University(RCPY-2-2012-K-036)
文摘In order to study the approximation by reciprocals of polynomials with real coefficients, one always assumes that the approximated function has a fixed sign on the given interval. Sometimes, the approximated function is permitted to have finite sign changes, such as l(l ≥ 1) times. Zhou Songping has studied the case l=1 and l≥2 in L^p spaces in order of priority. In this paper, we studied the case l ≥2 in Orlicz spaces by using the function extend, modified Jackson kernel, Hardy-Littlewood maximal function, Cauchy-Schwarz inequality, and obtained the Jackson type estimation.
基金supported by National Natural Science Foundation of China(11071019)Beijing Natural Science Foundation(1132001)
文摘We consider Jackson inequality in L^2 (B^d×T, Wκ,μ^B (x)), where the weight function Wκ,μ^B (X) is defined on the ball B^d and related to reflection group, and obtain the sharp Jackson inequalityEn-1,m-1(f)2≤κn,m(τ,r)ωr(f,t)2,τ≥2τn,λ,where Tn,λ is the first positive zero of the Gegenbauer cosine polynomial Cn^λ (cos θ)(n ∈ N).
文摘In this paper, we investigate the selection rule for desalinating seawater using functionalized graphene sheet as a semi-permissible membrane. Both the applied mathematical modeling and MD simulations will be used to determine the acceptance conditions for water molecule or sodium ion permeating into the functionalized graphene. Both the Lennard-Jones potential and Coulomb forces are considered by taking into accounts the major molecular and ionic interactions between molecules, ions and functionalized graphene sheet. The continuous approximation will then be used to coarse grain most significant molecular and ionic interactions so that the multi-body problems could be simplified into several two-body problems and the 3D motions are reduced into degenerated 1D motion. Our mathematical model and simulations show that the negatively charged graphene always accepts sodium ions and water;however the permeability of water molecules and sodium ions becomes very sensitive to the presence of positive charges on the graphene.