期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Einstein-Rosen Bridge (ER), Einstein-Podolsky-Rosen Experiment (EPR) and Zero Measure Rindler-KAM Cantorian Spacetime Geometry (ZMG) Are Conceptually Equivalent 被引量:1
1
作者 Mohamed S. El Naschie 《Journal of Quantum Information Science》 2016年第1期1-9,共9页
By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity... By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity are behind the physics and mathematics of quantum entanglement theory. To do this we base ourselves on the comprehensive set theoretical and topological machinery of the Cantorian-fractal E-infinity spacetime theory. Going all the way in this direction we even go beyond a quantum gravity theory to a precise set theoretical understanding of what a quantum particle, a quantum wave and quantum spacetime are. As a consequence of all these results and insights we can reason that the local Casimir pressure is the difference between the zero set quantum particle topological pressure and the empty set quantum wave topological pressure which acts as a wormhole “connecting” two different quantum particles with varying degrees of entanglement corresponding to varying degrees of emptiness of the empty set (wormhole). Our final result generalizes the recent conceptual equation of Susskind and Maldacena ER = EPR to become ZMG = ER = EPR where ZMG stands for zero measure Rindler-KAM geometry (of spacetime). These results were only possible because of the ultimate simplicity of our exact model based on Mauldin-Williams random Cantor sets and the corresponding exact Hardy’s quantum entanglement probability P(H) = where is the Hausdorff dimension of the topologically zero dimensional random Cantor thin set, i.e. a zero measure set and . On the other hand the positive measure spatial separation between the zero sets is a fat Cantor empty set possessing a Hausdorff dimension equal while its Menger-Urysohn topological dimension is a negative value equal minus one. This is the mathematical quintessence of a wormhole paralleling multiple connectivity in classical topology. It is both physically there because of the positive measure and not there because of the negative topological dimension. 展开更多
关键词 Zero Measure Thin Cantor Set Fat Cantor Set cantorian Fractal KAM spacetime Quantum Gravity Casimir Pressure E-Infinity Theory
下载PDF
The Emergence of Spacetime from the Quantum in Three Steps 被引量:5
2
作者 Mohamed S. El Naschie 《Advances in Pure Mathematics》 2016年第6期446-454,共9页
The paper presents a very simple and straight forward yet pure mathematical derivation of the structure of actual spacetime from quantum set theory. This is achieved by utilizing elements of the topological theory of ... The paper presents a very simple and straight forward yet pure mathematical derivation of the structure of actual spacetime from quantum set theory. This is achieved by utilizing elements of the topological theory of cobordism and the Menger-Urysohn dimensional theory in conjunction with von Neumann-Connes dimensional function of Klein-Penrose modular holographic boundary of the E8E8 exceptional Lie group bulk of our universe. The final result is a lucid sharp mental picture, namely that the quantum wave is an empty set representing the surface, i.e. boundary of the zero set quantum particle and in turn quantum spacetime is simply the boundary or the surface of the quantum wave empty set. The essential difference of the quantum wave and quantum spacetime is that the wave is a simple empty set while spacetime is a multi-fractal type of infinitely many empty sets with increasing degrees of emptiness. 展开更多
关键词 Quantum spacetime Transfiite Theory Noncommutative Geometry ‘tHooft-Susskind Holography cantorian spacetime Penrose-Connes Fractal Universe E-Infinity Theory E8 Exceptional Lie
下载PDF
Completing Einstein’s Spacetime 被引量:3
3
作者 M. S. El Naschie 《Journal of Modern Physics》 2016年第15期1972-1994,共24页
The four-dimensional character of Einstein’s spacetime is generally accepted in mainstream physics as beyond reasonable doubt correct. However the real problem is when we require scale invariance and that this spacet... The four-dimensional character of Einstein’s spacetime is generally accepted in mainstream physics as beyond reasonable doubt correct. However the real problem is when we require scale invariance and that this spacetime be four-dimensional on all scales. It is true that on our classical scale, the 4D decouples into 3D plus one time dimension and that on very large scale only the curvature of spacetime becomes noticeable. However the critical problem is that such spacetime must remain 4D no matter how small the scale we are probing is. This is something of crucial importance for quantum physics. The present work addresses this basic, natural and logical requirement and shows how many contradictory results and shortcomings of relativity and quantum gravity could be eliminated when we “complete” Einstein’s spacetime in such a geometrical gauge invariant way. Concurrently the work serves also as a review of the vast Literature on E-Infinity theory used here. 展开更多
关键词 E-INFINITY cantorian spacetime SELF-SIMILARITY M-THEORY Kaluza-Klein Space Fuzzy Kähler Manifolds Continued Fraction Isomorphic Length Geometrical Gauge Invariance
下载PDF
On a Quantum Gravity Fractal Spacetime Equation: QRG ≃HD + FG and Its Application to Dark Energy—Accelerated Cosmic Expansion 被引量:1
4
作者 Mohamed S. El Naschie 《Journal of Modern Physics》 2016年第8期729-736,共8页
The paper suggests that quantum relativistic gravity (QRG) is basically a higher dimensionality (HD) simulating relativity and non-classical effects plus a fractal Cantorian spacetime geometry (FG) simulating quantum ... The paper suggests that quantum relativistic gravity (QRG) is basically a higher dimensionality (HD) simulating relativity and non-classical effects plus a fractal Cantorian spacetime geometry (FG) simulating quantum mechanics. This more than just a conceptual equation is illustrated by integer approximation and an exact solution of the dark energy density behind cosmic expansion. 展开更多
关键词 Fractal cantorian spacetime Quantum Relativity Superstrings Transfinite Set Theory Extra spacetime Dimensions Quantum Physics Dark Energy Accelerated Cosmic Expansion Cosmic Topology Hyperbolic Geometry E-Infinity Theory Post Modernistic Physics
下载PDF
Kähler Dark Matter, Dark Energy Cosmic Density and Their Coupling 被引量:2
5
作者 Mohamed S. El Naschie 《Journal of Modern Physics》 2016年第14期1953-1962,共11页
We utilize homology and co-homology of a K3-K&#228;hler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) or... We utilize homology and co-homology of a K3-K&#228;hler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) ordinary energy;2) pure dark energy and 3) dark matter. In addition, the fundamental coupling of dark matter to pure dark energy is analyzed in detail for the first time. Finally, the so-obtained results are shown to be in astounding agreement with all previous theoretical analysis as well as with actual accurate cosmic measurements. 展开更多
关键词 Kähler Topology Dark Matter E-INFINITY Super Strings Golden Mean Computer Kerr Black Hole Geometry Accelerated Cosmic Expansion Fractal cantorian spacetime
下载PDF
The Speed of the Passing of Time as Yet Another Facet of Cosmic Dark Energy 被引量:1
6
作者 M. S. El Naschie 《Journal of Modern Physics》 2016年第15期2103-2125,共23页
The topological speed of light which may be used to compute the density of ordinary energy and dark energy of the cosmos is replaced by dimensionless quantity taken from Special Relativity. The said quantity may be in... The topological speed of light which may be used to compute the density of ordinary energy and dark energy of the cosmos is replaced by dimensionless quantity taken from Special Relativity. The said quantity may be interpreted as akin to time dilation ergo a notion topologically equivalent to the speed of the passing of time or the difference of elapsed time between two events in Einstein’s Relativity Theory. This results via Newton’s kinetic energy into the well-known observationally confirmed and accurately measured 4.5 and 95.5 percent of ordinary and dark Cosmic Energy density respectively. 展开更多
关键词 Topological Speed of Light Speed of Passing of Time Dark Energy Einstein Special Relativity E-Infinity Theory cantorian spacetime
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部