The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the...The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.展开更多
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t...In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.展开更多
Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational comp...Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid ap- proximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimiza- tion (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems.展开更多
This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several proper...This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several properties of the optimal solutions are explored. With the help of these optimality properties, a polynomial time approximation algorithm is developed by a new method. The new method adopts a shift technique to obtain a feasible solution of subproblem and takes the optimal solution of the subproblem as an approximation solution of our problem. The worst case performance for the approximation algorithm is proven to be (4√2 + 5)/7. Finally, an instance illustrates that the bound is tight.展开更多
Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high ...Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem.展开更多
We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to alloc...We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to allocate an optimal number of existing facilities to each new facility in order to satisfy their demands such that the summation of the weighted rectilinear barrier distances from new facilities to existing facilities is minimized. The proposed problem is designed as a mixed-integer nonlinear programming model. To show the efficiency of the model, a numerical example is provided. It is worth noting that the global optimal solution is obtained.展开更多
In this article, we propose novel reformulations for capacitated lot sizing problem. These reformulations are the result of reducing the number of variables (by eliminating the backorder variable) or increasing the nu...In this article, we propose novel reformulations for capacitated lot sizing problem. These reformulations are the result of reducing the number of variables (by eliminating the backorder variable) or increasing the number of constraints (time capacity constraints) in the standard problem formulation. These reformulations are expected to reduce the computational time complexity of the problem. Their computational efficiency is evaluated later in this article through numerical analysis on randomly generated problems.展开更多
Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we giv...Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we give a “vertical decomposition” approach to solve SSCWLP that uses Lagrangian relaxation. This way SSCWLP is broken into two versions of capacitated plant location problem (the CPLP_L and CPLP_R) by relaxing the flow balance constraints. For CPLP_R, we use well known Lagrangian relaxations given in literature (Christofides and Beasley [5] and Nauss [6]);and adopt them suitably for solving CPLP_L. We show theoretically in this paper that SSCWLP can be more efficiently solved by techniques of vertical decomposition developed in this paper than the method available in literature (Sharma and Berry [4]). Encouraging computational study is reported in this paper.展开更多
Smart cities make use of a variety of smart technology to improve societies in better ways.Such intelligent technologies,on the other hand,pose sig-nificant concerns in terms of power usage and emission of carbons.The ...Smart cities make use of a variety of smart technology to improve societies in better ways.Such intelligent technologies,on the other hand,pose sig-nificant concerns in terms of power usage and emission of carbons.The suggested study is focused on technological networks for big data-driven systems.With the support of software-defined technologies,a transportation-aided multicast routing system is suggested.By using public transportation as another communication platform in a smart city,network communication is enhanced.The primary objec-tive is to use as little energy as possible while delivering as much data as possible.The Attribute Decision Making with Capacitated Vehicle(CV)Routing Problem(RP)and Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used in the proposed research.For the optimum network selection,a Multi-Attribute Decision Making(MADM)method is utilized.For the sake of reducing energy usage,the Capacitated Vehicle Routing Problem(CVRP)is employed.To reduce the transportation cost and risk,Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used.Moreover,a mixed-integer programming approach is used to deal with the problem.To produce Pareto optimal solutions,an intelligent algorithm based on the epsilon constraint approach and genetic algorithm is cre-ated.A scenario of Auckland Transport is being used to validate the concept of offloading the information onto the buses for energy-efficient and delay-tolerant data transfer.Therefore the experiments have demonstrated that the buses may be used effectively to carry out the data by customer requests while using 30%of less energy than the other systems.展开更多
During financial crisis,companies constantly need free cash flows to efficiently react to any uncertainty,thus ensuring solvency.Working capital requirement(WCR)has been recognized as a key factor for releasing tied u...During financial crisis,companies constantly need free cash flows to efficiently react to any uncertainty,thus ensuring solvency.Working capital requirement(WCR)has been recognized as a key factor for releasing tied up cash in companies.However,in literatures related to lot-sizing problem,WCR has only been studied in the single-level supply chain context.In this paper,we initially adopt WCR model for a multi-level case.A two-level(supplier–customer)model is established on the basis of the classic multi-level lot-sizing model integrated with WCR financing cost.To tackle this problem,we propose sequential and centralized approaches to solve the two-level case with a serial chain structure.The ZIO(Zero Inventory Ordering)property is further confirmed valid in both cases.This property allows us to establish a dynamic programming-based algorithm,which solves the problem in O(T).Finally,numerical tests show differences in optimal plans obtained by both approaches and the influence of varying delays in payment on the WCR of both actors.展开更多
In this work, the Lagrangean Relaxation method has been discussed to solve different sizes of capacitated facility location problem (CFLP). A good lower bound has been achieved on the solution of the CFLP considered i...In this work, the Lagrangean Relaxation method has been discussed to solve different sizes of capacitated facility location problem (CFLP). A good lower bound has been achieved on the solution of the CFLP considered in this paper. This lower bound has been improved by using the Volume algorithm. The methods of setting two important parameters in heuristic have been given. The approaches used to gain the lower bound have been explained. The results of this work have been compared with the known results given by Beasley.展开更多
文摘The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.
基金supported by the National Science Fund for Distinguished Young Scholars of China(61525304)the National Natural Science Foundation of China(61873328)
文摘In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.
基金Project (No. 60174009) supported by the National Natural ScienceFoundation of China
文摘Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid ap- proximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimiza- tion (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems.
基金supported by National Natural Science Foundation of China (No. 10671108 and 70971076)Found for the Doctoral Program of Higher Education of Ministry of Education of China (No. 20070446001)+1 种基金Innovation Planning Project of Shandong Province (No. SDYY06034)Foundation of Qufu Normal University (No. XJZ200849)
文摘This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several properties of the optimal solutions are explored. With the help of these optimality properties, a polynomial time approximation algorithm is developed by a new method. The new method adopts a shift technique to obtain a feasible solution of subproblem and takes the optimal solution of the subproblem as an approximation solution of our problem. The worst case performance for the approximation algorithm is proven to be (4√2 + 5)/7. Finally, an instance illustrates that the bound is tight.
文摘Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem.
文摘We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to allocate an optimal number of existing facilities to each new facility in order to satisfy their demands such that the summation of the weighted rectilinear barrier distances from new facilities to existing facilities is minimized. The proposed problem is designed as a mixed-integer nonlinear programming model. To show the efficiency of the model, a numerical example is provided. It is worth noting that the global optimal solution is obtained.
文摘In this article, we propose novel reformulations for capacitated lot sizing problem. These reformulations are the result of reducing the number of variables (by eliminating the backorder variable) or increasing the number of constraints (time capacity constraints) in the standard problem formulation. These reformulations are expected to reduce the computational time complexity of the problem. Their computational efficiency is evaluated later in this article through numerical analysis on randomly generated problems.
文摘Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we give a “vertical decomposition” approach to solve SSCWLP that uses Lagrangian relaxation. This way SSCWLP is broken into two versions of capacitated plant location problem (the CPLP_L and CPLP_R) by relaxing the flow balance constraints. For CPLP_R, we use well known Lagrangian relaxations given in literature (Christofides and Beasley [5] and Nauss [6]);and adopt them suitably for solving CPLP_L. We show theoretically in this paper that SSCWLP can be more efficiently solved by techniques of vertical decomposition developed in this paper than the method available in literature (Sharma and Berry [4]). Encouraging computational study is reported in this paper.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the korea government(MSIT)(No.2022H1D8A3038040)and the Soonchunhyang University Research Fund.
文摘Smart cities make use of a variety of smart technology to improve societies in better ways.Such intelligent technologies,on the other hand,pose sig-nificant concerns in terms of power usage and emission of carbons.The suggested study is focused on technological networks for big data-driven systems.With the support of software-defined technologies,a transportation-aided multicast routing system is suggested.By using public transportation as another communication platform in a smart city,network communication is enhanced.The primary objec-tive is to use as little energy as possible while delivering as much data as possible.The Attribute Decision Making with Capacitated Vehicle(CV)Routing Problem(RP)and Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used in the proposed research.For the optimum network selection,a Multi-Attribute Decision Making(MADM)method is utilized.For the sake of reducing energy usage,the Capacitated Vehicle Routing Problem(CVRP)is employed.To reduce the transportation cost and risk,Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used.Moreover,a mixed-integer programming approach is used to deal with the problem.To produce Pareto optimal solutions,an intelligent algorithm based on the epsilon constraint approach and genetic algorithm is cre-ated.A scenario of Auckland Transport is being used to validate the concept of offloading the information onto the buses for energy-efficient and delay-tolerant data transfer.Therefore the experiments have demonstrated that the buses may be used effectively to carry out the data by customer requests while using 30%of less energy than the other systems.
基金This work is supported by the Ministry of Science and Technology of China(Grant No.2016YFC0503606)the National Natural Science Foundation of China for Distinguished Young Scholar(Grant No.71825007)ANR FILEAS FOG project.
文摘During financial crisis,companies constantly need free cash flows to efficiently react to any uncertainty,thus ensuring solvency.Working capital requirement(WCR)has been recognized as a key factor for releasing tied up cash in companies.However,in literatures related to lot-sizing problem,WCR has only been studied in the single-level supply chain context.In this paper,we initially adopt WCR model for a multi-level case.A two-level(supplier–customer)model is established on the basis of the classic multi-level lot-sizing model integrated with WCR financing cost.To tackle this problem,we propose sequential and centralized approaches to solve the two-level case with a serial chain structure.The ZIO(Zero Inventory Ordering)property is further confirmed valid in both cases.This property allows us to establish a dynamic programming-based algorithm,which solves the problem in O(T).Finally,numerical tests show differences in optimal plans obtained by both approaches and the influence of varying delays in payment on the WCR of both actors.
文摘In this work, the Lagrangean Relaxation method has been discussed to solve different sizes of capacitated facility location problem (CFLP). A good lower bound has been achieved on the solution of the CFLP considered in this paper. This lower bound has been improved by using the Volume algorithm. The methods of setting two important parameters in heuristic have been given. The approaches used to gain the lower bound have been explained. The results of this work have been compared with the known results given by Beasley.