Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high ...Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem.展开更多
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t...In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.展开更多
In this paper, we have conducted a literature review on the recent developments and publications involving the vehicle routing problem and its variants, namely vehicle routing problem with time windows (VRPTW) and the...In this paper, we have conducted a literature review on the recent developments and publications involving the vehicle routing problem and its variants, namely vehicle routing problem with time windows (VRPTW) and the capacitated vehicle routing problem (CVRP) and also their variants. The VRP is classified as an NP-hard problem. Hence, the use of exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. The vehicle routing problem comes under combinatorial problem. Hence, to get solutions in determining routes which are realistic and very close to the optimal solution, we use heuristics and meta-heuristics. In this paper we discuss the various exact methods and the heuristics and meta-heuristics used to solve the VRP and its variants.展开更多
The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxation of the Capacitated Vehicle Routing Problem (CVRP) where customers may be assigned to multiple routes. A new construction heuristic is developed for th...The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxation of the Capacitated Vehicle Routing Problem (CVRP) where customers may be assigned to multiple routes. A new construction heuristic is developed for the SDVRP and computational results are given for thirty-two data sets from previous literature. With respect to the total travel distance, the construction heuristic compares favorably versus a column generation method and a two-phase method. In addition, the construction heuristic is computationally faster than both previous methods. This construction heuristic could be useful in developing initial solutions, very quickly, for a heuristic, algorithm, or exact procedure.展开更多
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ...Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.展开更多
The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithm...The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.展开更多
The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To ge...The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To get solutions in determining routes which are realistic and very close to the actual solution, we use heuristics and metaheuristics which are of the combinatorial optimization type. A literature review of VRPTW, TDVRP, and a metaheuristic such as the genetic algorithm was conducted. In this paper, the implementation of the VRPTW and its extension, the time-dependent VRPTW (TDVRPTW) has been carried out using the model as well as metaheuristics such as the genetic algorithm (GA). The algorithms were implemented, using Matlab and HeuristicLab optimization software. A plugin was developed using Visual C# and DOT NET framework 4.5. Results were tested using Solomon’s 56 benchmark instances classified into groups such as C1, C2, R1, R2, RC1, RC2, with 100 customer nodes, 25 vehicles and each vehicle capacity of 200. The results were comparable to the earlier algorithms developed and in some cases the current algorithm yielded better results in terms of total distance travelled and the average number of vehicles used.展开更多
With the challenge of great growing of transport diversity for the automobile enterprises, the heterogeneous vehicle routing problem with multiple depots, multiple types of finished vehicles and multiple types of tran...With the challenge of great growing of transport diversity for the automobile enterprises, the heterogeneous vehicle routing problem with multiple depots, multiple types of finished vehicles and multiple types of transport vehicles in finished vehicle logistics(HVRPMD) is modelled and solved. A multi-objective optimization model for HVRPMD is presented considering loading constraints to minimize the total cost and minimize the number of transport vehicles. Then a hybrid heuristic algorithm based on genetic algorithm and particle swarm optimization(GA-PSO) is developed. Moreover, a case study is used to evaluate the effectiveness of this algorithm. By comparing the GA-PSO algorithm with the traditional GA algorithm, the simulation results demonstrate the proposed GA-PSO algorithm is able to better support the HVRPMD problem in practice. Contributions of the paper are the modelling and solving of a complex HVRPMD in logistics industry.展开更多
The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as fol...The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as follows: first, we introduce data from the GVRP or instances from the literature. Second, we use the first cluster route second technique using the k-means algorithm, then we apply the BicriterionAntAPE (BicriterionAnt Adjacent Pairwise Exchange) algorithm to each cluster obtained. And finally, we make a comparative analysis of the results obtained by the case study as well as instances from the literature with some existing metaheuristics NSGA, SPEA, BicriterionAnt in order to see the performance of the new hybrid algorithm. The results show that the routes which minimize the total distance traveled by the vehicles are different from those which minimize the CO<sub>2</sub> pollution, which can be understood by the fact that the objectives are conflicting. In this study, we also find that the optimal route reduces product CO<sub>2</sub> by almost 7.2% compared to the worst route.展开更多
The purpose of this work is to present a methodology to provide a solution to a Bi-objective Green Vehicle Routing Problem (BGVRP). The methodology, illustrated using a case study (newspaper distribution problem) and ...The purpose of this work is to present a methodology to provide a solution to a Bi-objective Green Vehicle Routing Problem (BGVRP). The methodology, illustrated using a case study (newspaper distribution problem) and literature Instances, was divided into three stages: Stage 1, data treatment;Stage 2, “metaheuristic approaches” (hybrid or non-hybrid), used comparatively, more specifically: NSGA-II (Non-dominated Sorting Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), which were compared with the new approaches proposed by the authors, CWNSGA-II (Clarke and Wright’s Savings with the Non-dominated Sorting Genetic Algorithm II) and CWTSNSGA-II (Clarke and Wright’s Savings, Tabu Search and Non-dominated Sorting Genetic Algorithm II);Stage 3, analysis of the results, with a comparison of the algorithms. An optimization of 19.9% was achieved for Objective Function 1 (OF<sub>1</sub>;minimization of CO<sub>2</sub> emissions) and consequently the same percentage for the minimization of total distance, and 87.5% for Objective Function 2 (OF<sub>2</sub>;minimization of the difference in demand). Metaheuristic approaches hybrid achieved superior results for case study and instances. In this way, the procedure presented here can bring benefits to society as it considers environmental issues and also balancing work between the routes, ensuring savings and satisfaction for the users.展开更多
Smart cities make use of a variety of smart technology to improve societies in better ways.Such intelligent technologies,on the other hand,pose sig-nificant concerns in terms of power usage and emission of carbons.The ...Smart cities make use of a variety of smart technology to improve societies in better ways.Such intelligent technologies,on the other hand,pose sig-nificant concerns in terms of power usage and emission of carbons.The suggested study is focused on technological networks for big data-driven systems.With the support of software-defined technologies,a transportation-aided multicast routing system is suggested.By using public transportation as another communication platform in a smart city,network communication is enhanced.The primary objec-tive is to use as little energy as possible while delivering as much data as possible.The Attribute Decision Making with Capacitated Vehicle(CV)Routing Problem(RP)and Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used in the proposed research.For the optimum network selection,a Multi-Attribute Decision Making(MADM)method is utilized.For the sake of reducing energy usage,the Capacitated Vehicle Routing Problem(CVRP)is employed.To reduce the transportation cost and risk,Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used.Moreover,a mixed-integer programming approach is used to deal with the problem.To produce Pareto optimal solutions,an intelligent algorithm based on the epsilon constraint approach and genetic algorithm is cre-ated.A scenario of Auckland Transport is being used to validate the concept of offloading the information onto the buses for energy-efficient and delay-tolerant data transfer.Therefore the experiments have demonstrated that the buses may be used effectively to carry out the data by customer requests while using 30%of less energy than the other systems.展开更多
The vehicle routing problem(VRP) is a well-known combinatorial optimization issue in transportation and logistics network systems. There exist several limitations associated with the traditional VRP. Releasing the res...The vehicle routing problem(VRP) is a well-known combinatorial optimization issue in transportation and logistics network systems. There exist several limitations associated with the traditional VRP. Releasing the restricted conditions of traditional VRP has become a research focus in the past few decades. The vehicle routing problem with split deliveries and pickups(VRPSPDP) is particularly proposed to release the constraints on the visiting times per customer and vehicle capacity, that is, to allow the deliveries and pickups for each customer to be simultaneously split more than once. Few studies have focused on the VRPSPDP problem. In this paper we propose a two-stage heuristic method integrating the initial heuristic algorithm and hybrid heuristic algorithm to study the VRPSPDP problem. To validate the proposed algorithm, Solomon benchmark datasets and extended Solomon benchmark datasets were modified to compare with three other popular algorithms. A total of 18 datasets were used to evaluate the effectiveness of the proposed method. The computational results indicated that the proposed algorithm is superior to these three algorithms for VRPSPDP in terms of total travel cost and average loading rate.展开更多
Industry 4.0 is a concept that assists companies in developing a modern supply chain(MSC)system when they are faced with a dynamic process.Because Industry 4.0 focuses on mobility and real-time integration,it is a goo...Industry 4.0 is a concept that assists companies in developing a modern supply chain(MSC)system when they are faced with a dynamic process.Because Industry 4.0 focuses on mobility and real-time integration,it is a good framework for a dynamic vehicle routing problem(DVRP).This research works on DVRP.The aim of this research is to minimize transportation cost without exceeding the capacity constraint of each vehicle while serving customer demands from a common depot.Meanwhile,new orders arrive at a specific time into the system while the vehicles are executing the delivery of existing orders.This paper presents a two-stage hybrid algorithm for solving the DVRP.In the first stage,construction algorithms are applied to develop the initial route.In the second stage,improvement algorithms are applied.Experimental results were designed for different sizes of problems.Analysis results show the effectiveness of the proposed algorithm.展开更多
针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化...针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。展开更多
文摘Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem.
基金supported by the National Science Fund for Distinguished Young Scholars of China(61525304)the National Natural Science Foundation of China(61873328)
文摘In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP.
文摘In this paper, we have conducted a literature review on the recent developments and publications involving the vehicle routing problem and its variants, namely vehicle routing problem with time windows (VRPTW) and the capacitated vehicle routing problem (CVRP) and also their variants. The VRP is classified as an NP-hard problem. Hence, the use of exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. The vehicle routing problem comes under combinatorial problem. Hence, to get solutions in determining routes which are realistic and very close to the optimal solution, we use heuristics and meta-heuristics. In this paper we discuss the various exact methods and the heuristics and meta-heuristics used to solve the VRP and its variants.
文摘The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxation of the Capacitated Vehicle Routing Problem (CVRP) where customers may be assigned to multiple routes. A new construction heuristic is developed for the SDVRP and computational results are given for thirty-two data sets from previous literature. With respect to the total travel distance, the construction heuristic compares favorably versus a column generation method and a two-phase method. In addition, the construction heuristic is computationally faster than both previous methods. This construction heuristic could be useful in developing initial solutions, very quickly, for a heuristic, algorithm, or exact procedure.
基金The National Natural Science Foundation of China(No.61074147)the Natural Science Foundation of Guangdong Province(No.S2011010005059)+2 种基金the Foundation of Enterprise-University-Research Institute Cooperation from Guangdong Province and Ministry of Education of China(No.2012B091000171,2011B090400460)the Science and Technology Program of Guangdong Province(No.2012B050600028)the Science and Technology Program of Huadu District,Guangzhou(No.HD14ZD001)
文摘Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.
文摘The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.
文摘The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To get solutions in determining routes which are realistic and very close to the actual solution, we use heuristics and metaheuristics which are of the combinatorial optimization type. A literature review of VRPTW, TDVRP, and a metaheuristic such as the genetic algorithm was conducted. In this paper, the implementation of the VRPTW and its extension, the time-dependent VRPTW (TDVRPTW) has been carried out using the model as well as metaheuristics such as the genetic algorithm (GA). The algorithms were implemented, using Matlab and HeuristicLab optimization software. A plugin was developed using Visual C# and DOT NET framework 4.5. Results were tested using Solomon’s 56 benchmark instances classified into groups such as C1, C2, R1, R2, RC1, RC2, with 100 customer nodes, 25 vehicles and each vehicle capacity of 200. The results were comparable to the earlier algorithms developed and in some cases the current algorithm yielded better results in terms of total distance travelled and the average number of vehicles used.
基金Supported by the National Natural Science Foundation of China(No.51565036)。
文摘With the challenge of great growing of transport diversity for the automobile enterprises, the heterogeneous vehicle routing problem with multiple depots, multiple types of finished vehicles and multiple types of transport vehicles in finished vehicle logistics(HVRPMD) is modelled and solved. A multi-objective optimization model for HVRPMD is presented considering loading constraints to minimize the total cost and minimize the number of transport vehicles. Then a hybrid heuristic algorithm based on genetic algorithm and particle swarm optimization(GA-PSO) is developed. Moreover, a case study is used to evaluate the effectiveness of this algorithm. By comparing the GA-PSO algorithm with the traditional GA algorithm, the simulation results demonstrate the proposed GA-PSO algorithm is able to better support the HVRPMD problem in practice. Contributions of the paper are the modelling and solving of a complex HVRPMD in logistics industry.
文摘The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as follows: first, we introduce data from the GVRP or instances from the literature. Second, we use the first cluster route second technique using the k-means algorithm, then we apply the BicriterionAntAPE (BicriterionAnt Adjacent Pairwise Exchange) algorithm to each cluster obtained. And finally, we make a comparative analysis of the results obtained by the case study as well as instances from the literature with some existing metaheuristics NSGA, SPEA, BicriterionAnt in order to see the performance of the new hybrid algorithm. The results show that the routes which minimize the total distance traveled by the vehicles are different from those which minimize the CO<sub>2</sub> pollution, which can be understood by the fact that the objectives are conflicting. In this study, we also find that the optimal route reduces product CO<sub>2</sub> by almost 7.2% compared to the worst route.
文摘The purpose of this work is to present a methodology to provide a solution to a Bi-objective Green Vehicle Routing Problem (BGVRP). The methodology, illustrated using a case study (newspaper distribution problem) and literature Instances, was divided into three stages: Stage 1, data treatment;Stage 2, “metaheuristic approaches” (hybrid or non-hybrid), used comparatively, more specifically: NSGA-II (Non-dominated Sorting Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), which were compared with the new approaches proposed by the authors, CWNSGA-II (Clarke and Wright’s Savings with the Non-dominated Sorting Genetic Algorithm II) and CWTSNSGA-II (Clarke and Wright’s Savings, Tabu Search and Non-dominated Sorting Genetic Algorithm II);Stage 3, analysis of the results, with a comparison of the algorithms. An optimization of 19.9% was achieved for Objective Function 1 (OF<sub>1</sub>;minimization of CO<sub>2</sub> emissions) and consequently the same percentage for the minimization of total distance, and 87.5% for Objective Function 2 (OF<sub>2</sub>;minimization of the difference in demand). Metaheuristic approaches hybrid achieved superior results for case study and instances. In this way, the procedure presented here can bring benefits to society as it considers environmental issues and also balancing work between the routes, ensuring savings and satisfaction for the users.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the korea government(MSIT)(No.2022H1D8A3038040)and the Soonchunhyang University Research Fund.
文摘Smart cities make use of a variety of smart technology to improve societies in better ways.Such intelligent technologies,on the other hand,pose sig-nificant concerns in terms of power usage and emission of carbons.The suggested study is focused on technological networks for big data-driven systems.With the support of software-defined technologies,a transportation-aided multicast routing system is suggested.By using public transportation as another communication platform in a smart city,network communication is enhanced.The primary objec-tive is to use as little energy as possible while delivering as much data as possible.The Attribute Decision Making with Capacitated Vehicle(CV)Routing Problem(RP)and Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used in the proposed research.For the optimum network selection,a Multi-Attribute Decision Making(MADM)method is utilized.For the sake of reducing energy usage,the Capacitated Vehicle Routing Problem(CVRP)is employed.To reduce the transportation cost and risk,Half Open Multi-Depot Heterogeneous Vehicle Routing Problem is used.Moreover,a mixed-integer programming approach is used to deal with the problem.To produce Pareto optimal solutions,an intelligent algorithm based on the epsilon constraint approach and genetic algorithm is cre-ated.A scenario of Auckland Transport is being used to validate the concept of offloading the information onto the buses for energy-efficient and delay-tolerant data transfer.Therefore the experiments have demonstrated that the buses may be used effectively to carry out the data by customer requests while using 30%of less energy than the other systems.
基金Project supported by the National Natural Science Foundation of China(No.51138003)the National Social Science Foundation of Chongqing of China(No.2013YBJJ035)
文摘The vehicle routing problem(VRP) is a well-known combinatorial optimization issue in transportation and logistics network systems. There exist several limitations associated with the traditional VRP. Releasing the restricted conditions of traditional VRP has become a research focus in the past few decades. The vehicle routing problem with split deliveries and pickups(VRPSPDP) is particularly proposed to release the constraints on the visiting times per customer and vehicle capacity, that is, to allow the deliveries and pickups for each customer to be simultaneously split more than once. Few studies have focused on the VRPSPDP problem. In this paper we propose a two-stage heuristic method integrating the initial heuristic algorithm and hybrid heuristic algorithm to study the VRPSPDP problem. To validate the proposed algorithm, Solomon benchmark datasets and extended Solomon benchmark datasets were modified to compare with three other popular algorithms. A total of 18 datasets were used to evaluate the effectiveness of the proposed method. The computational results indicated that the proposed algorithm is superior to these three algorithms for VRPSPDP in terms of total travel cost and average loading rate.
文摘Industry 4.0 is a concept that assists companies in developing a modern supply chain(MSC)system when they are faced with a dynamic process.Because Industry 4.0 focuses on mobility and real-time integration,it is a good framework for a dynamic vehicle routing problem(DVRP).This research works on DVRP.The aim of this research is to minimize transportation cost without exceeding the capacity constraint of each vehicle while serving customer demands from a common depot.Meanwhile,new orders arrive at a specific time into the system while the vehicles are executing the delivery of existing orders.This paper presents a two-stage hybrid algorithm for solving the DVRP.In the first stage,construction algorithms are applied to develop the initial route.In the second stage,improvement algorithms are applied.Experimental results were designed for different sizes of problems.Analysis results show the effectiveness of the proposed algorithm.
文摘针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。