提出一种新的蚁群算法(Multiple Ant Colonies Algorithm based on Sweep Algorithm, SbMACA)用以求解车辆路径问题(Capacitated Vehicle Routing Problem, CVRP)。该方法同以往蚁群算法的不同之处主要体现在两个方面:第一,首次将扫描...提出一种新的蚁群算法(Multiple Ant Colonies Algorithm based on Sweep Algorithm, SbMACA)用以求解车辆路径问题(Capacitated Vehicle Routing Problem, CVRP)。该方法同以往蚁群算法的不同之处主要体现在两个方面:第一,首次将扫描算法应用于蚁群算法,通过对蚂蚁所构造的初始解中的不同子回路之间的点进行交换优化,该算法可以有效地改进初始解的质量;第二,提出并采用了一种新的多蚁群技术,各个蚁群分别进行各自的搜索,在各个蚁群均停滞后,对蚁群之间的信息素进行交换与更新,以利于蚁群跳离局部最优值。实验结果表明,SbMACA算法具有很强的搜索能力,求取各CVRP的Benchmark问题所得解的质量同最好解相比较而言,平均仅有 0.28%的差距,是求解车辆路径问题的一种十分有效的方法。展开更多
文摘提出一种新的蚁群算法(Multiple Ant Colonies Algorithm based on Sweep Algorithm, SbMACA)用以求解车辆路径问题(Capacitated Vehicle Routing Problem, CVRP)。该方法同以往蚁群算法的不同之处主要体现在两个方面:第一,首次将扫描算法应用于蚁群算法,通过对蚂蚁所构造的初始解中的不同子回路之间的点进行交换优化,该算法可以有效地改进初始解的质量;第二,提出并采用了一种新的多蚁群技术,各个蚁群分别进行各自的搜索,在各个蚁群均停滞后,对蚁群之间的信息素进行交换与更新,以利于蚁群跳离局部最优值。实验结果表明,SbMACA算法具有很强的搜索能力,求取各CVRP的Benchmark问题所得解的质量同最好解相比较而言,平均仅有 0.28%的差距,是求解车辆路径问题的一种十分有效的方法。