A stable CMOS low drop-out regulator without an off-chip capacitor for system-on-chip application is presen- ted. By using an on-chip pole splitting technique and an on-chip pole-zero canceling technique, high stabili...A stable CMOS low drop-out regulator without an off-chip capacitor for system-on-chip application is presen- ted. By using an on-chip pole splitting technique and an on-chip pole-zero canceling technique, high stability is achieved without an off-chip capacitor. The chip was implemented in CSMC's 0.5μm CMOS technology and the die area is 600μm×480μm. The error of the output voltage due to line variation is less than -+ 0.21% ,and the quiescent current is 39.8μA. The power supply rejection ratio at 100kHz is -33.9dB, and the output noise spectral densities at 100Hz and 100kHz are 1.65 and 0.89μV √Hz, respectively.展开更多
This paper presents a capacitor-free CMOS low dropout voltage regulator which has high PSR perfor- mance and low chip area. Pole splitting and gm boosting techniques are employed to achieve good stability. The capacit...This paper presents a capacitor-free CMOS low dropout voltage regulator which has high PSR perfor- mance and low chip area. Pole splitting and gm boosting techniques are employed to achieve good stability. The capacitor-free chip LDO was fabricated in commercial 0.18μm CMOS technology provided by GSMC (Shanghai, China). Measured results show that the capacitor-free LDO has a stable output voltage 1.79 V, when supply voltage changes from 2.5 to 5 V, and the LDO is capable of driving maximum 100 mA load current. The LDO has high power supply rejection about -79 dB at low frequency and -40 dB at 1 MHz frequency, while sacrifice of the LDO's active chip-area is only smaller than 0.02 mm2.展开更多
基于Nuvoton 0.5μm 5 V标准CMOS工艺,设计了一种高稳定性、高瞬态响应、无片外电容低压差线性稳压器(LDO)。电路中引入了过冲、欠冲电压改善模块,用来削减过/欠充电压,互不干扰。过冲电压改善电路将LDO输出电压与参考电压进行比较,过...基于Nuvoton 0.5μm 5 V标准CMOS工艺,设计了一种高稳定性、高瞬态响应、无片外电容低压差线性稳压器(LDO)。电路中引入了过冲、欠冲电压改善模块,用来削减过/欠充电压,互不干扰。过冲电压改善电路将LDO输出电压与参考电压进行比较,过冲状态下开启从LDO输出端到地的快速放电通路,欠冲电压改善电路通过电容耦合获得反映LDO输出电压瞬态变化的采样信号,经反向放大后加速功率管栅极电容放电,进而通过功率管对LDO输出电容充电。仿真结果表明,在TT工艺角下该低压差线性稳压器的空载相位裕度为64.57°,满载相位裕度为62.58°,过冲电压为40 m V,欠冲电压为97.6 m V,线性调整率为0.733‰;负载调整率19μV/m A;电源电压抑制比(PSRR)为-73 d B。展开更多
文摘A stable CMOS low drop-out regulator without an off-chip capacitor for system-on-chip application is presen- ted. By using an on-chip pole splitting technique and an on-chip pole-zero canceling technique, high stability is achieved without an off-chip capacitor. The chip was implemented in CSMC's 0.5μm CMOS technology and the die area is 600μm×480μm. The error of the output voltage due to line variation is less than -+ 0.21% ,and the quiescent current is 39.8μA. The power supply rejection ratio at 100kHz is -33.9dB, and the output noise spectral densities at 100Hz and 100kHz are 1.65 and 0.89μV √Hz, respectively.
基金Project supported by the National Natural Science Foundation of China(Nos.61036004,61234003,61221004)
文摘This paper presents a capacitor-free CMOS low dropout voltage regulator which has high PSR perfor- mance and low chip area. Pole splitting and gm boosting techniques are employed to achieve good stability. The capacitor-free chip LDO was fabricated in commercial 0.18μm CMOS technology provided by GSMC (Shanghai, China). Measured results show that the capacitor-free LDO has a stable output voltage 1.79 V, when supply voltage changes from 2.5 to 5 V, and the LDO is capable of driving maximum 100 mA load current. The LDO has high power supply rejection about -79 dB at low frequency and -40 dB at 1 MHz frequency, while sacrifice of the LDO's active chip-area is only smaller than 0.02 mm2.
文摘基于Nuvoton 0.5μm 5 V标准CMOS工艺,设计了一种高稳定性、高瞬态响应、无片外电容低压差线性稳压器(LDO)。电路中引入了过冲、欠冲电压改善模块,用来削减过/欠充电压,互不干扰。过冲电压改善电路将LDO输出电压与参考电压进行比较,过冲状态下开启从LDO输出端到地的快速放电通路,欠冲电压改善电路通过电容耦合获得反映LDO输出电压瞬态变化的采样信号,经反向放大后加速功率管栅极电容放电,进而通过功率管对LDO输出电容充电。仿真结果表明,在TT工艺角下该低压差线性稳压器的空载相位裕度为64.57°,满载相位裕度为62.58°,过冲电压为40 m V,欠冲电压为97.6 m V,线性调整率为0.733‰;负载调整率19μV/m A;电源电压抑制比(PSRR)为-73 d B。