The effect of Phanerochaete chrysosporium on degradation and preg-robbing capacity of activated carbon,which was used as a substitute of carbonaceous matter in carbonaceous gold ores,was studied.After 14 d treatment w...The effect of Phanerochaete chrysosporium on degradation and preg-robbing capacity of activated carbon,which was used as a substitute of carbonaceous matter in carbonaceous gold ores,was studied.After 14 d treatment with Phanerochaete chrysosporium,the degradation rate of activated carbon reached 27.59%.The XRD and FTIR analyses indicate that Phanerochaete chrysosporium can distort the micro-crystalline structure of activated carbon,increase the number of oxygen-containing groups and aliphatics and make the aromatic structures be oxidized and exfoliated.The gold-adsorption tests show that Phanerochaete chrysosporium can reduce the preg-robbing capacity of activated carbon by 12.88%.This indicates that Phanerochaete chrysosporium is an available microorganism,and it can be employed to reduce the preg-robbing capacity of carbonaceous matter and improve the gold leaching rate.The combined effect of passivation,alkalization and oxidation of biological enzymes-free radicals of Phanerochaete chrysosporium on carbonaceous matter was also discussed.展开更多
Machine learning-based methods have emerged as a promising solution to accurate battery capacity estimation for battery management systems.However,they are generally developed in a supervised manner which requires a c...Machine learning-based methods have emerged as a promising solution to accurate battery capacity estimation for battery management systems.However,they are generally developed in a supervised manner which requires a considerable number of input features and corresponding capacities,leading to prohibitive costs and efforts for data collection.In response to this issue,this study proposes a convolutional neural network(CNN)based method to perform end-to-end capacity estimation by taking only raw impedance spectra as input.More importantly,an input reconstruction module is devised to effectively exploit impedance spectra without corresponding capacities in the training process,thereby significantly alleviating the cost of collecting training data.Two large battery degradation datasets encompassing over 4700 impedance spectra are developed to validate the proposed method.The results show that accurate capacity estimation can be achieved when substantial training samples with measured capacities are given.However,the estimation performance of supervised machine learning algorithms sharply deteriorates when fewer samples with measured capacities are available.In this case,the proposed method outperforms supervised benchmarks and can reduce the root mean square error by up to 50.66%.A further validation under different current rates and states of charge confirms the effectiveness of the proposed method.Our method provides a flexible approach to take advantage of unlabelled samples for developing data-driven models and is promising to be generalised to other battery management tasks.展开更多
The lithium-ion battery has been widely used as an energy source. Charge rate, discharge rate, and operating tem- perature are very important factors for the capacity degradations of power batteries and battery packs....The lithium-ion battery has been widely used as an energy source. Charge rate, discharge rate, and operating tem- perature are very important factors for the capacity degradations of power batteries and battery packs. Firstly, in this paper we make use of an accelerated life test and a statistical analysis method to establish the capacity accelerated degradation model under three constant stress parameters according to the degradation data, which are charge rate, discharge rate, and operating temperature, and then we propose a capacity degradation model according to the current residual capacity of a Li-ion cell under dynamic stress parameters. Secondly, we analyze the charge and discharge process of a series power battery pack and interpret the correlation between the capacity degradations of the battery pack and its charge/discharge rate. According to this cycling condition, we establish a capacity degradation model of a series power battery pack under inconsistent capacity of cells, and analyze the degradation mechanism with capacity variance and operating temperature difference. The comparative analysis of test results shows that the inconsistent operating temperatures of cells in the series power battery pack are the main cause of its degradation; when the difference between inconsistent temperatures is narrowed by 5 ℃, the cycle life can be improved by more than 50%. Therefore, it effectively improves the cycle life of the series battery pack to reasonably assemble the batteries according to their capacities and to narrow the differences in operating temperature among cells.展开更多
This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state...This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.展开更多
[Objective] The paper was to explore the vegetation regressive succession law in arid zone of central Ningxia.[Method] Based on the survey data during 1982-2001,the grass type vegetation characteristics,grassland prod...[Objective] The paper was to explore the vegetation regressive succession law in arid zone of central Ningxia.[Method] Based on the survey data during 1982-2001,the grass type vegetation characteristics,grassland productivity and the quality of grass in 7 survey sites were analyzed.[Result] The grass type in arid zone of central Ningxia had changed or was changing in the last 20 years;the dominant species within communities were also replacing by other species,vegetation coverage and number of plant species within communities were continuously declined,the bearing capacity of grassland had averagely declined by 114%,and the quality of grassland seriously declined.[Conclusion] The study provided basic data for the sustainable use of typical grassland.展开更多
The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input mul...The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input multiple-output (MIMO) system to analyze the ergodic capacity of the GDAS and make conclusions that it is impossible to achieve an analytical expression for the ergodic capacity of the GDAS. Moreover, in order to evaluate the performance of the ergodic capacity of the GDAS conveniently, the analytical lower bound and upper bound of the ergodic capacity of the GDAS are derived by using the results from multivariate statistics and matrix inequalities, under the scenarios of Rayleigh-lognormal fading and equal power allocation scheme at transmitter. Finally, the analytical bounds are verified by comparisons with the numerical results.展开更多
Spinel LiMn204 was synthesized by a solid-state method. A 204468-size battery was fabricated and stored at 55℃. The structure and morphology of the LiMn204 cathode were analyzed by X-ray diffraction (XRD) and scann...Spinel LiMn204 was synthesized by a solid-state method. A 204468-size battery was fabricated and stored at 55℃. The structure and morphology of the LiMn204 cathode were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) technique. Energy dispersive spectroscopy (EDS) was used to analyze the surface component of the carbon anode. The discharge capacities of LiMn204 stored for 0, 24, 48, and 96 h are 106, 98, 96, and 92 mAh·g^-1, respectively. The cyclic performance is improved after storage. The capacity retentions of LiMn204 stored for 0, 24, 48, and 96 h are 83.8%, 85.8%, 86.9%, and 88.6% after 180 cycles. The intensity of all the LiMn204 diffraction peaks is weakened. Mn is detected from the carbon electrode when the battery is stored for 96 h. Cyclic voltammograms and electrochemical impedance spectroscopy (EIS) were used to examine the surface state of the electrode after storage. The results show that the resistance and polarization of LiMn2O4/electrolyte is increased after storage, which is responsible for the fading of capacity.展开更多
The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the meta...The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the metallic manganese that helps for catalyzing electrolyte decomposition.This could poison and damage the solid electrolyte interface(SEI) film,leading to the the capacity fade in Li-ion batteries.We propose a new mechanism that Mn(Ⅱ) deposites at the anode hinders and/or blocks the intercalation/de-intercalation of lithium ions,which leads to the capacity fade in Li-ion batteries.Based on the new mechanism assumption,a kind of new structure with core-shell characteristic is designed to inhabit manganese ion dissolution,thus improving electrochemical cycle performance of the cell.By the way,this mechanism hypothesis is also supported by the results of these experiments.The LiMn2-xTixO4 shell layer enhances cathode resistance to corrosion attack and effectively suppresses dissolution of Mn,then improves battery cycle performance with LiMn_2O_4 cathode,even at high rate and elevated temperature.展开更多
Lithium sulfur battery (LSB) offers several advantages such as very high energy density, low-cost, and environmental-friendliness. However, it suffers from serious degradation of its reversible capacity because of t...Lithium sulfur battery (LSB) offers several advantages such as very high energy density, low-cost, and environmental-friendliness. However, it suffers from serious degradation of its reversible capacity because of the dissolution of reaction intermediates, lithium polysulfides, into the electrolyte. To solve this limitation, there are many studies using graphene-based materials due to their excellent mechanical strength and high conductivity. Compared with graphene, graphene oxide (GO) contains various oxygen functional groups, which enhance the reaction with lithium polysulfides. Here, we investigated the positive effect of using GO mixed with carbon black on the performance of cathode in LSB. We have observed a smaller drop of capacity in GO mixed sulfur cathode. We further demonstrate that the mechanistic origin of reversibility improvement, as confirmed through CV and Raman spectra, can be explained by the stabilization of sulfur in lithium polysulfide intermediates by oxygen functional groups of GO to prevent dissolution. Our findings suggest that the use of graphene oxide-based cathode is a promising route to significantly improve the reversibility of current LSB.展开更多
Volatile organic compounds (VOCs) are a new class of air pollutants posing threat to the environment. Newer technologies are being developed for their control among which biofiltration seem to be most attractive. Biof...Volatile organic compounds (VOCs) are a new class of air pollutants posing threat to the environment. Newer technologies are being developed for their control among which biofiltration seem to be most attractive. Biofiltration of methanol vapor from air stream was evaluated in this study. Experimental investigations were conducted on a laboratory scale biofilter, containing mixture of compost and polystyrene inert particles as the filter materials. Mixed consortium of activated sludge was used as an inoculum. The continuous performance of biofilter for methanol removal was monitored for different concentrations and flow rates. The removal efficiencies decreased at higher concentrations and higher gas flow rates. A maximum elimination capacity of 85 g/(m 3·h) was achieved. The response of biofilter to upset loading operation showed that the biofilm in the biofilters was quite stable and quickly adapted to adverse operational conditions.展开更多
The novel closed-form expressions for the average channel capacity of dual selection diversity is presented, as well as, the bit-error rate (BER) of several coherent and noncoherent digital modulation schemes in the...The novel closed-form expressions for the average channel capacity of dual selection diversity is presented, as well as, the bit-error rate (BER) of several coherent and noncoherent digital modulation schemes in the correlated Weibull fading channels with nonidentical statisticS. The results are expressed in terms of Meijer's Gfunction, which can be easily evaluated numerically. The simulation results are presented to validate the proposed theoretical analysis and to examine the effects of the fading severity on the concerned quantities.展开更多
The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by X...The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by XRD,SEM,EIS and CV.Impedance measurement shows an overall increase in the cell resistance upon cycling.Moreover,it also presents anincreased charge-transfer resistance(Rct)for the cell cycled at RT.CV test shows that the reversibility of lithium ioninsertion/extraction reaction is reduced.The capacity fading for the cells cycled can be explained by taking into account the repeatedfilm formation over the surface of anode and the side reactions.The products of side reactions deposited on separator are able toreduce the porosity of separator.As a result,the migration resistance of lithium ion between the cathode and anode would beincreased,leading the fading of capacity and potential.展开更多
A three-dimensional advection-diffusion model coupled with the degradation process is established for describing the transport of chemical oxygen demand (COD). Comparison of the simulated distribution of COD at the su...A three-dimensional advection-diffusion model coupled with the degradation process is established for describing the transport of chemical oxygen demand (COD). Comparison of the simulated distribution of COD at the surface in the Bohai Sea in August, 2001 with field observations, shows that the model simulates the dataset reasonably well. The Laizhou Bay, Bohai Bay, and Liaodong Bay were contaminated heavily near shore. Based on the optimal discharge flux method, the Environmental Capacity (EC) and allocated capacities of COD in the Bohai Sea are calculated. For seawater of Grades I to IV of the Chinese National Standard, the ECs of COD in the Bohai Sea were 77×104 t/a, 116×104 t/a, 154×104 t/a and 193×104 t/a, respectively. The Huanghe (Yellow) River pollutant discharge accounted for the largest percentage of COD at 14.3%, followed by that of from the Liugu River (11.5%), and other nine local rivers below 10%. The COD level in 2005 was worse than that of Grade II seawater and was beyond the environmental capacity. In average, 35% COD reduction is called to meet the standard of Grade I seawater.展开更多
Mountain protected areas are characterized by high biodiversity,which makes it a great challenge for managers to maintain a balance between their use and the stability of natural ecosystems.Maintaining that balance is...Mountain protected areas are characterized by high biodiversity,which makes it a great challenge for managers to maintain a balance between their use and the stability of natural ecosystems.Maintaining that balance is particularly difficult in areas with high tourism pressure.The expected volume of tourist traffic should be considered at the planning stage of the tourist infrastructure development process.Insufficient capacity of tourist infrastructure can lead to environmental degradation,which is hard,or at times impossible,to repair.In our research,we identified patterns of tourist footpath and road functioning in an environmentally protected area with high volumes of tourist traffic.Data from geomorphologic mapping was analyzed in order to identify tourist footpath and road structures in the Tatra National Park(TNP).Fieldwork was conducted in several stages between 1995 and 2019.Orthophotomaps from the years 1977,2009,2017 and 2019 were used to identify and compare degraded zones along selected tourist footpaths.Degraded zones were defined as areas surrounding a footpath or tourist road with a mean width larger than or equal to 10 meters,with heavily damaged or completely removed vegetation and exposed,weathered cover,where geomorphic processes that would not take place under normal conditions are readily observable.The examined tourist footpaths and roads vary in terms of their morphometric parameters.Research has shown important differences between mean and maximum footpath width as well as maximum incision depth for the forest zone versus the subalpine and alpine zones.A lack of differences in these parameters was noted between the alpine and subalpine zones.Research has shown that an increase in the surface area of degraded zones found adjacent to tourist footpaths occurred in all the studied geo-ecological zones in the study period.However,the largest increase occurred atop wide ridgelines found in the alpine zone.Degraded zones may be an indication of exceeding the tourist carrying capacity of a mountain tourist area.Mass tourism in TNP contributes to the formation of degraded zones adjacent to footpaths,whose continuous evolution may lead to irreversible changes in local relief.展开更多
P2-type sodium layered oxide cathode (Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)P2-NNMO) has attracted great attention as a promising cathode material for sodium ion batteries because of its high specific capacity. However, this m...P2-type sodium layered oxide cathode (Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)P2-NNMO) has attracted great attention as a promising cathode material for sodium ion batteries because of its high specific capacity. However, this material suffers from a rapid capacity fade during high-voltage cycling. Several mechanisms have been proposed to explain the capacity fade, including intragranular fracture caused by the P2-O2 phase transion, surface structural change, and irreversible lattice oxygen release. Here we systematically investigated the morphological, structural, and chemical changes of P2-NNMO during high-voltage cycling using a variety of characterization techniques. It was found that the lattice distortion and crystal-plane buckling induced by the P2-O2 phase transition slowed down the Na-ion transport in the bulk and hindered the extraction of the Na ions. The sluggish kinetics was the main reason in reducing the accessible capacity while other interfacial degradation mechanisms played minor roles. Our results not only enabled a more complete understanding of the capacity-fading mechanism of P2-NNMO but also revealed the underlying correlations between lattice doping and the moderately improved cycle performance.展开更多
In order to obtain an in-depth insight into the mechanism of charge compensation and capacity fading in LiCoO2, the evolution of electronic structure of LiCoO2 at different cutoff voltages and after different cycles a...In order to obtain an in-depth insight into the mechanism of charge compensation and capacity fading in LiCoO2, the evolution of electronic structure of LiCoO2 at different cutoff voltages and after different cycles are studied by soft x-ray absorption spectroscopy in total electron(TEY) and fluorescence(TFY) detection modes, which provide surface and bulk information, respectively. The spectra of Co L2,3-edge indicate that Co contributes to charge compensation below 4.4 V.Combining with the spectra of O K-edge, it manifests that only O contributes to electron compensation above 4.4 V with the formation of local O 2 p holes both on the surface and in the bulk, where the surficial O evolves more remarkably. The evolution of the O 2 p holes gives an explanation to the origin of O2^-or even O2. A comparison between the TEY and TFY of O K-edge spectra of LiCoO2 cycled in a range from 3 V to 4.6 V indicates both the structural change in the bulk and aggregation of lithium salts on the electrode surface are responsible for the capacity fading. However, the latter is found to play a more important role after many cycles.展开更多
A normal spinel LiMn_2O_4 as cathode material for lithium-ion cells wascycled galvanostatically (0.2 C) at 55 deg C. To determine the contribution of each voltage plateauto the total capacity fading of the cathode upo...A normal spinel LiMn_2O_4 as cathode material for lithium-ion cells wascycled galvanostatically (0.2 C) at 55 deg C. To determine the contribution of each voltage plateauto the total capacity fading of the cathode upon repeated cycling, the capacities in each plateauwere separated by differentiation of voltage vs. capacity. The results how that the capacity fadingin the upper voltage plateau is more rapidly than that in the lower during discharging, while incharging process, it fades slower than that in the lower voltage range. The increased capacity shiftand aggravated self-discharge/electrolyte oxidation during discharging contribute to a high fadingrate in the upper step. Capacity shift also takes place during charging process, which againenhancing the fading rate of the lower voltage plateau. An increase in capacity shift, as a resultof an increase in polarization of the cell, plays a major role in determining the fading rate ineach voltage plateau, further reflecting the thickening of the passivation layer on the activeparticles, and the accumulation of electrolyte decomposition. The relative capacity loss formodified spinels is well correlated with the relative increase in the polarization of thehalf-cells, confirming the above causes for capacity fade of this kind of cathode material.展开更多
Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in s...Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion.展开更多
The spacial distribution characteristics, activity and degradation capability of the biofilm in integrated vertical-flow constructed wetland were investigated. Results showed that the biofilm widely distributed in the...The spacial distribution characteristics, activity and degradation capability of the biofilm in integrated vertical-flow constructed wetland were investigated. Results showed that the biofilm widely distributed in the substrate of integrated vertical-flow constructed wetland and mainly in the 0-10 cm top layer where the activity ofdehydrogenase of the biofilm was also higher than that of other layers. The water quality could also affect the activity of the biofilm, for the TF(1,3,5-Triphenylformazan) amount reduced by the biofim incubated in water of the higher eutrophication was larger, too. The PCP (pentachlorophenol) removal rate by the substrate with biofilm was 1.5 times that without biofilm. In total, the biofilm of the down-flow chamber appeared larger biomass, higher dehydrogenase activity and stronger degradation capability of organic contamination than that in up-flow chamber and it was the major place for removal of the organic matters in waste water.展开更多
A new analytical expression is presented for the instantaneous power Probability Density Function (PDF) of receiver signals over composite K-u/gamma fading channels. Moreover, the exact expression of channel capacit...A new analytical expression is presented for the instantaneous power Probability Density Function (PDF) of receiver signals over composite K-u/gamma fading channels. Moreover, the exact expression of channel capacity is derived in the form of an infinite series, while an accurate approximation expression is obtained in closed form. To reveal the implications of the model parameters on capacity, we provide an expression for the case of a high-SNR environment. The relationship of the presented results with previously reported results on generalised-K and K fading channels is also discussed. Finally, numerical and simulation results are presented to prove the correctness of our derived expressions.展开更多
基金Projects (51174062,51104036) supported by the National Natural Science Foundation of ChinaProject (2012AA061502) supported by the National Hi-tech Research and Development Program of China+1 种基金Project (2012BAE06B05) supported by the National Science and Technology Support Program of China during the 12th Five-Year Plan PeriodProjects (N120602006,N110302002,N110602005) supported by Fundamental Research Funds for the Central Universities of China
文摘The effect of Phanerochaete chrysosporium on degradation and preg-robbing capacity of activated carbon,which was used as a substitute of carbonaceous matter in carbonaceous gold ores,was studied.After 14 d treatment with Phanerochaete chrysosporium,the degradation rate of activated carbon reached 27.59%.The XRD and FTIR analyses indicate that Phanerochaete chrysosporium can distort the micro-crystalline structure of activated carbon,increase the number of oxygen-containing groups and aliphatics and make the aromatic structures be oxidized and exfoliated.The gold-adsorption tests show that Phanerochaete chrysosporium can reduce the preg-robbing capacity of activated carbon by 12.88%.This indicates that Phanerochaete chrysosporium is an available microorganism,and it can be employed to reduce the preg-robbing capacity of carbonaceous matter and improve the gold leaching rate.The combined effect of passivation,alkalization and oxidation of biological enzymes-free radicals of Phanerochaete chrysosporium on carbonaceous matter was also discussed.
基金supported by the National Key R&D Program of China(2021YFB2402002)the National Natural Science Foundation of China(51922006 and 51877009)+1 种基金the China Postdoctoral Science Foundation(BX2021035 and 2022M710379)the Beijing Natural Science Foundation(Grant No.L223013)。
文摘Machine learning-based methods have emerged as a promising solution to accurate battery capacity estimation for battery management systems.However,they are generally developed in a supervised manner which requires a considerable number of input features and corresponding capacities,leading to prohibitive costs and efforts for data collection.In response to this issue,this study proposes a convolutional neural network(CNN)based method to perform end-to-end capacity estimation by taking only raw impedance spectra as input.More importantly,an input reconstruction module is devised to effectively exploit impedance spectra without corresponding capacities in the training process,thereby significantly alleviating the cost of collecting training data.Two large battery degradation datasets encompassing over 4700 impedance spectra are developed to validate the proposed method.The results show that accurate capacity estimation can be achieved when substantial training samples with measured capacities are given.However,the estimation performance of supervised machine learning algorithms sharply deteriorates when fewer samples with measured capacities are available.In this case,the proposed method outperforms supervised benchmarks and can reduce the root mean square error by up to 50.66%.A further validation under different current rates and states of charge confirms the effectiveness of the proposed method.Our method provides a flexible approach to take advantage of unlabelled samples for developing data-driven models and is promising to be generalised to other battery management tasks.
基金supported by the National Natural Science Foundation of China(Grant Nos.61004092 and 51007088)the National High Technology Research and Development Program of China(Grant Nos.2011AA11A251 and 2011AA11A262)+1 种基金the International Science&Technology Cooperation Program of China(Grant Nos.2010DFA72760 and 2011DFA70570)the Research Foundation of National Engineering Laboratory for Electric Vehicles,China(GrantNo.2012-NELEV-03)
文摘The lithium-ion battery has been widely used as an energy source. Charge rate, discharge rate, and operating tem- perature are very important factors for the capacity degradations of power batteries and battery packs. Firstly, in this paper we make use of an accelerated life test and a statistical analysis method to establish the capacity accelerated degradation model under three constant stress parameters according to the degradation data, which are charge rate, discharge rate, and operating temperature, and then we propose a capacity degradation model according to the current residual capacity of a Li-ion cell under dynamic stress parameters. Secondly, we analyze the charge and discharge process of a series power battery pack and interpret the correlation between the capacity degradations of the battery pack and its charge/discharge rate. According to this cycling condition, we establish a capacity degradation model of a series power battery pack under inconsistent capacity of cells, and analyze the degradation mechanism with capacity variance and operating temperature difference. The comparative analysis of test results shows that the inconsistent operating temperatures of cells in the series power battery pack are the main cause of its degradation; when the difference between inconsistent temperatures is narrowed by 5 ℃, the cycle life can be improved by more than 50%. Therefore, it effectively improves the cycle life of the series battery pack to reasonably assemble the batteries according to their capacities and to narrow the differences in operating temperature among cells.
基金supported by the National Natural Science Foundation of China under grant 61941106。
文摘This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.
基金Supported by Key Scientific and Technological Projects in Ningxia Hui Autonomous Region"Research and Demonstration of Sustain-able Utilization Technology in Arid and Semiarid Grassland in Ningxia Hui Autonomous Region"~~
文摘[Objective] The paper was to explore the vegetation regressive succession law in arid zone of central Ningxia.[Method] Based on the survey data during 1982-2001,the grass type vegetation characteristics,grassland productivity and the quality of grass in 7 survey sites were analyzed.[Result] The grass type in arid zone of central Ningxia had changed or was changing in the last 20 years;the dominant species within communities were also replacing by other species,vegetation coverage and number of plant species within communities were continuously declined,the bearing capacity of grassland had averagely declined by 114%,and the quality of grassland seriously declined.[Conclusion] The study provided basic data for the sustainable use of typical grassland.
基金Foundation item:The National Natural Science Foundation of China(No.60496311)
文摘The composite channel models of the generalized distributed antenna system (GDAS) such as Rayleigh-lognormal fading are studied. Then comparisons are performed between the GDAS and the traditional multiple-input multiple-output (MIMO) system to analyze the ergodic capacity of the GDAS and make conclusions that it is impossible to achieve an analytical expression for the ergodic capacity of the GDAS. Moreover, in order to evaluate the performance of the ergodic capacity of the GDAS conveniently, the analytical lower bound and upper bound of the ergodic capacity of the GDAS are derived by using the results from multivariate statistics and matrix inequalities, under the scenarios of Rayleigh-lognormal fading and equal power allocation scheme at transmitter. Finally, the analytical bounds are verified by comparisons with the numerical results.
基金supported by the National Basic Research Program of China (No. 2007CB613607)
文摘Spinel LiMn204 was synthesized by a solid-state method. A 204468-size battery was fabricated and stored at 55℃. The structure and morphology of the LiMn204 cathode were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) technique. Energy dispersive spectroscopy (EDS) was used to analyze the surface component of the carbon anode. The discharge capacities of LiMn204 stored for 0, 24, 48, and 96 h are 106, 98, 96, and 92 mAh·g^-1, respectively. The cyclic performance is improved after storage. The capacity retentions of LiMn204 stored for 0, 24, 48, and 96 h are 83.8%, 85.8%, 86.9%, and 88.6% after 180 cycles. The intensity of all the LiMn204 diffraction peaks is weakened. Mn is detected from the carbon electrode when the battery is stored for 96 h. Cyclic voltammograms and electrochemical impedance spectroscopy (EIS) were used to examine the surface state of the electrode after storage. The results show that the resistance and polarization of LiMn2O4/electrolyte is increased after storage, which is responsible for the fading of capacity.
基金Funded by the National Natural Science Foundation of China(Nos.21561016,21661015)Jiangxi Provincial Science&Technology Program(Nos.20133BBE50010,20142BDH80020,and 20161BBE50052)Science&Technology Program of Jiangxi Provincial Education Bureau(No.GJJ150775)
文摘The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the metallic manganese that helps for catalyzing electrolyte decomposition.This could poison and damage the solid electrolyte interface(SEI) film,leading to the the capacity fade in Li-ion batteries.We propose a new mechanism that Mn(Ⅱ) deposites at the anode hinders and/or blocks the intercalation/de-intercalation of lithium ions,which leads to the capacity fade in Li-ion batteries.Based on the new mechanism assumption,a kind of new structure with core-shell characteristic is designed to inhabit manganese ion dissolution,thus improving electrochemical cycle performance of the cell.By the way,this mechanism hypothesis is also supported by the results of these experiments.The LiMn2-xTixO4 shell layer enhances cathode resistance to corrosion attack and effectively suppresses dissolution of Mn,then improves battery cycle performance with LiMn_2O_4 cathode,even at high rate and elevated temperature.
基金supported by the Core Technology Development Program for Next-Generation Energy Storage of the Research Institute for Solar and Sustainable Energies (RISE) at GISTthe DOST UPD ERDT Faculty Development Program
文摘Lithium sulfur battery (LSB) offers several advantages such as very high energy density, low-cost, and environmental-friendliness. However, it suffers from serious degradation of its reversible capacity because of the dissolution of reaction intermediates, lithium polysulfides, into the electrolyte. To solve this limitation, there are many studies using graphene-based materials due to their excellent mechanical strength and high conductivity. Compared with graphene, graphene oxide (GO) contains various oxygen functional groups, which enhance the reaction with lithium polysulfides. Here, we investigated the positive effect of using GO mixed with carbon black on the performance of cathode in LSB. We have observed a smaller drop of capacity in GO mixed sulfur cathode. We further demonstrate that the mechanistic origin of reversibility improvement, as confirmed through CV and Raman spectra, can be explained by the stabilization of sulfur in lithium polysulfide intermediates by oxygen functional groups of GO to prevent dissolution. Our findings suggest that the use of graphene oxide-based cathode is a promising route to significantly improve the reversibility of current LSB.
文摘Volatile organic compounds (VOCs) are a new class of air pollutants posing threat to the environment. Newer technologies are being developed for their control among which biofiltration seem to be most attractive. Biofiltration of methanol vapor from air stream was evaluated in this study. Experimental investigations were conducted on a laboratory scale biofilter, containing mixture of compost and polystyrene inert particles as the filter materials. Mixed consortium of activated sludge was used as an inoculum. The continuous performance of biofilter for methanol removal was monitored for different concentrations and flow rates. The removal efficiencies decreased at higher concentrations and higher gas flow rates. A maximum elimination capacity of 85 g/(m 3·h) was achieved. The response of biofilter to upset loading operation showed that the biofilm in the biofilters was quite stable and quickly adapted to adverse operational conditions.
基金the National High-Tech Research and Development Program (2002AA123032)the Innovative Research Team Program of UESTC, China.
文摘The novel closed-form expressions for the average channel capacity of dual selection diversity is presented, as well as, the bit-error rate (BER) of several coherent and noncoherent digital modulation schemes in the correlated Weibull fading channels with nonidentical statisticS. The results are expressed in terms of Meijer's Gfunction, which can be easily evaluated numerically. The simulation results are presented to validate the proposed theoretical analysis and to examine the effects of the fading severity on the concerned quantities.
基金Project(51574287)supported by the National Natural Science Foundation of ChinaProject(2015CX001)supported by the Innovation-driven Plan in Central South University,China
文摘The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by XRD,SEM,EIS and CV.Impedance measurement shows an overall increase in the cell resistance upon cycling.Moreover,it also presents anincreased charge-transfer resistance(Rct)for the cell cycled at RT.CV test shows that the reversibility of lithium ioninsertion/extraction reaction is reduced.The capacity fading for the cells cycled can be explained by taking into account the repeatedfilm formation over the surface of anode and the side reactions.The products of side reactions deposited on separator are able toreduce the porosity of separator.As a result,the migration resistance of lithium ion between the cathode and anode would beincreased,leading the fading of capacity and potential.
基金Supported by 908 Program of the State Ocean Administration of China (Nos.908-02-02-02,908-02-02-03)the State Ocean Administration Foundation of China (No.200805065)
文摘A three-dimensional advection-diffusion model coupled with the degradation process is established for describing the transport of chemical oxygen demand (COD). Comparison of the simulated distribution of COD at the surface in the Bohai Sea in August, 2001 with field observations, shows that the model simulates the dataset reasonably well. The Laizhou Bay, Bohai Bay, and Liaodong Bay were contaminated heavily near shore. Based on the optimal discharge flux method, the Environmental Capacity (EC) and allocated capacities of COD in the Bohai Sea are calculated. For seawater of Grades I to IV of the Chinese National Standard, the ECs of COD in the Bohai Sea were 77×104 t/a, 116×104 t/a, 154×104 t/a and 193×104 t/a, respectively. The Huanghe (Yellow) River pollutant discharge accounted for the largest percentage of COD at 14.3%, followed by that of from the Liugu River (11.5%), and other nine local rivers below 10%. The COD level in 2005 was worse than that of Grade II seawater and was beyond the environmental capacity. In average, 35% COD reduction is called to meet the standard of Grade I seawater.
基金part of the project“Relief transformation of mountain areas as a result of anthropogenic activity”funded by the Pedagogical University of Krakow(Poland),project number BN.610-193/PBU/2020。
文摘Mountain protected areas are characterized by high biodiversity,which makes it a great challenge for managers to maintain a balance between their use and the stability of natural ecosystems.Maintaining that balance is particularly difficult in areas with high tourism pressure.The expected volume of tourist traffic should be considered at the planning stage of the tourist infrastructure development process.Insufficient capacity of tourist infrastructure can lead to environmental degradation,which is hard,or at times impossible,to repair.In our research,we identified patterns of tourist footpath and road functioning in an environmentally protected area with high volumes of tourist traffic.Data from geomorphologic mapping was analyzed in order to identify tourist footpath and road structures in the Tatra National Park(TNP).Fieldwork was conducted in several stages between 1995 and 2019.Orthophotomaps from the years 1977,2009,2017 and 2019 were used to identify and compare degraded zones along selected tourist footpaths.Degraded zones were defined as areas surrounding a footpath or tourist road with a mean width larger than or equal to 10 meters,with heavily damaged or completely removed vegetation and exposed,weathered cover,where geomorphic processes that would not take place under normal conditions are readily observable.The examined tourist footpaths and roads vary in terms of their morphometric parameters.Research has shown important differences between mean and maximum footpath width as well as maximum incision depth for the forest zone versus the subalpine and alpine zones.A lack of differences in these parameters was noted between the alpine and subalpine zones.Research has shown that an increase in the surface area of degraded zones found adjacent to tourist footpaths occurred in all the studied geo-ecological zones in the study period.However,the largest increase occurred atop wide ridgelines found in the alpine zone.Degraded zones may be an indication of exceeding the tourist carrying capacity of a mountain tourist area.Mass tourism in TNP contributes to the formation of degraded zones adjacent to footpaths,whose continuous evolution may lead to irreversible changes in local relief.
基金financial support from the National Natural Science Foundation of China (21938005, 21573147, 22005190, 22008154, 21872163)the Science & Technology Commission of Shanghai Municipality, the Natural Science Foundation of Shanghai (19DZ1205500, 19ZR1424600, 19ZR1475100)the Sichuan Science and Technology Program (2021JDRC0015 to L.S.L)。
文摘P2-type sodium layered oxide cathode (Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)P2-NNMO) has attracted great attention as a promising cathode material for sodium ion batteries because of its high specific capacity. However, this material suffers from a rapid capacity fade during high-voltage cycling. Several mechanisms have been proposed to explain the capacity fade, including intragranular fracture caused by the P2-O2 phase transion, surface structural change, and irreversible lattice oxygen release. Here we systematically investigated the morphological, structural, and chemical changes of P2-NNMO during high-voltage cycling using a variety of characterization techniques. It was found that the lattice distortion and crystal-plane buckling induced by the P2-O2 phase transition slowed down the Na-ion transport in the bulk and hindered the extraction of the Na ions. The sluggish kinetics was the main reason in reducing the accessible capacity while other interfacial degradation mechanisms played minor roles. Our results not only enabled a more complete understanding of the capacity-fading mechanism of P2-NNMO but also revealed the underlying correlations between lattice doping and the moderately improved cycle performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21503263,U1632269,21473235,and 11227902)
文摘In order to obtain an in-depth insight into the mechanism of charge compensation and capacity fading in LiCoO2, the evolution of electronic structure of LiCoO2 at different cutoff voltages and after different cycles are studied by soft x-ray absorption spectroscopy in total electron(TEY) and fluorescence(TFY) detection modes, which provide surface and bulk information, respectively. The spectra of Co L2,3-edge indicate that Co contributes to charge compensation below 4.4 V.Combining with the spectra of O K-edge, it manifests that only O contributes to electron compensation above 4.4 V with the formation of local O 2 p holes both on the surface and in the bulk, where the surficial O evolves more remarkably. The evolution of the O 2 p holes gives an explanation to the origin of O2^-or even O2. A comparison between the TEY and TFY of O K-edge spectra of LiCoO2 cycled in a range from 3 V to 4.6 V indicates both the structural change in the bulk and aggregation of lithium salts on the electrode surface are responsible for the capacity fading. However, the latter is found to play a more important role after many cycles.
文摘A normal spinel LiMn_2O_4 as cathode material for lithium-ion cells wascycled galvanostatically (0.2 C) at 55 deg C. To determine the contribution of each voltage plateauto the total capacity fading of the cathode upon repeated cycling, the capacities in each plateauwere separated by differentiation of voltage vs. capacity. The results how that the capacity fadingin the upper voltage plateau is more rapidly than that in the lower during discharging, while incharging process, it fades slower than that in the lower voltage range. The increased capacity shiftand aggravated self-discharge/electrolyte oxidation during discharging contribute to a high fadingrate in the upper step. Capacity shift also takes place during charging process, which againenhancing the fading rate of the lower voltage plateau. An increase in capacity shift, as a resultof an increase in polarization of the cell, plays a major role in determining the fading rate ineach voltage plateau, further reflecting the thickening of the passivation layer on the activeparticles, and the accumulation of electrolyte decomposition. The relative capacity loss formodified spinels is well correlated with the relative increase in the polarization of thehalf-cells, confirming the above causes for capacity fade of this kind of cathode material.
文摘Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion.
文摘The spacial distribution characteristics, activity and degradation capability of the biofilm in integrated vertical-flow constructed wetland were investigated. Results showed that the biofilm widely distributed in the substrate of integrated vertical-flow constructed wetland and mainly in the 0-10 cm top layer where the activity ofdehydrogenase of the biofilm was also higher than that of other layers. The water quality could also affect the activity of the biofilm, for the TF(1,3,5-Triphenylformazan) amount reduced by the biofim incubated in water of the higher eutrophication was larger, too. The PCP (pentachlorophenol) removal rate by the substrate with biofilm was 1.5 times that without biofilm. In total, the biofilm of the down-flow chamber appeared larger biomass, higher dehydrogenase activity and stronger degradation capability of organic contamination than that in up-flow chamber and it was the major place for removal of the organic matters in waste water.
基金supported by the National NatNatural Science Foundation of China under Grants No. 61132003,No. 61101237the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No. 2012D07
文摘A new analytical expression is presented for the instantaneous power Probability Density Function (PDF) of receiver signals over composite K-u/gamma fading channels. Moreover, the exact expression of channel capacity is derived in the form of an infinite series, while an accurate approximation expression is obtained in closed form. To reveal the implications of the model parameters on capacity, we provide an expression for the case of a high-SNR environment. The relationship of the presented results with previously reported results on generalised-K and K fading channels is also discussed. Finally, numerical and simulation results are presented to prove the correctness of our derived expressions.