期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A new interacting capillary bundle model on the multiphase flow in micropores of tight rocks
1
作者 Wen-Quan Deng Tian-Bo Liang +3 位作者 Wen-Zhong Wang Hao Liu Jun-Lin Wu Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1099-1112,共14页
Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettabi... Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calculate the imbibition rate in pores of different sizes during wettability alteration and capture the non-Darcy effect in micro-and nano-scale pores. 展开更多
关键词 Imbibition Multiphase flow Tight rock Interacting capillary bundle model Wettability
下载PDF
Effects of low frequency external excitation on oil slug mobilization and flow in a water saturated capillary model
2
作者 Liming Dai Yihe Zhang 《Petroleum》 CSCD 2019年第4期375-381,共7页
The present research is to experimentally study the joint effects of external pressure and vibratory excitations of low frequency on oil slug mobilization and flow in a capillary model.During and after the oil slug mo... The present research is to experimentally study the joint effects of external pressure and vibratory excitations of low frequency on oil slug mobilization and flow in a capillary model.During and after the oil slug mobilization,the flow phenomena and pressure drop variation across the model are investigated.The distance travelled by the oil slug subjected to various external pressure and vibratory excitations are also studied.The experimental results obtained indicate that the external vibratory excitation acting on the model has positive effect on the flow and mobilization of the oil slug in the model.It is found in the research,with the application of the excitation,the contact angle between the oil slug and tube-wall is changed;the maximum pressure required to mobilize the oil slug is reduced accordingly;and the oil slug travel distance is increased in comparing with that without external excitations.This research contributes to the comprehension of improved liquid mobilization in porous media under the application of external excitations.The finding of the research is significant for studying the two-phase liquid flow in porous media subjected to external excitations and provides insights for Enhanced Oil Recovery with waterflooding and vibratory stimulations. 展开更多
关键词 Two-phase liquid motion Oil slug mobilization Vibratory excitation Liquid mobilization Porous media capillary model Low frequency stimulation
原文传递
Quantitative prediction of residual wetting film generated in mobilizing a two-phase liquid in a capillary model
3
作者 Harsh Joshi Liming Dai 《Petroleum》 2015年第4期342-348,共7页
This research studies the motion of immiscible two-phase liquid flow in a capillary tube through a numerical approach employing the volume of fluid method,for simulating the core-annular flow and water flooding in oil... This research studies the motion of immiscible two-phase liquid flow in a capillary tube through a numerical approach employing the volume of fluid method,for simulating the core-annular flow and water flooding in oil reservoirs of porous media.More specifically,the simulations are a representation of water flooding at a pore scale.A capillary tube model is established with ANSYS Fluent and verified.The numerical results matches well with the existing data available in the literature.Penetration of a less viscous liquid in a liquid of higher viscosity and the development of a residual wetting film of the higher viscosity liquid are thoroughly investigated.The effects of Capillary number,Reynolds Number and Viscosity ratio on the residual wetting film are studied in detail,as the thickness is directly related to the residual oil left in the porous media after water flooding.It should be noticed that the liquids considered in this research can be any liquids of different viscosity not necessarily oil and water.The results of this study can be used as guidance in the field of water flooding. 展开更多
关键词 capillary model Residual wetting film Higher viscosity liquid Water flooding Numerical simulation Immiscible flow Oil slug mobilization
原文传递
Anisotropic dynamic permeability model for porous media
4
作者 PEI Xuehao LIU Yuetian +3 位作者 LIN Ziyu FAN Pingtian MI Liao XUE Liang 《Petroleum Exploration and Development》 SCIE 2024年第1期193-202,共10页
Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was ... Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was verified using pore-scale flow simulation.The uniaxial strain process was calculated and the main factors affecting permeability changes in different directions in the deformation process were analyzed.In the process of uniaxial strain during the exploitation of layered oil and gas reservoirs,the effect of effective surface porosity on the permeability in all directions is consistent.With the decrease of effective surface porosity,the sensitivity of permeability to strain increases.The sensitivity of the permeability perpendicular to the direction of compression to the strain decreases with the increase of the tortuosity,while the sensitivity of the permeability in the direction of compression to the strain increases with the increase of the tortuosity.For layered reservoirs with the same initial tortuosity in all directions,the tortuosity plays a decisive role in the relative relationship between the variations of permeability in all directions during pressure drop.When the tortuosity is less than 1.6,the decrease rate of horizontal permeability is higher than that of vertical permeability,while the opposite is true when the tortuosity is greater than 1.6.This phenomenon cannot be represented by traditional dynamic permeability model.After the verification by experimental data of pore-scale simulation,the new model has high fitting accuracy and can effectively characterize the effects of deformation in different directions on the permeability in all directions. 展开更多
关键词 porous media dynamic permeability ANISOTROPY capillary network model TORTUOSITY normal strain flow simulation permeability change characteristics
下载PDF
A new model for predicting irreducible water saturation in tight gas reservoirs 被引量:2
5
作者 Yu-Liang Su Jin-Gang Fu +4 位作者 Lei Li Wen-Dong Wang Atif Zafar Mian Zhang Wei-Ping Ouyang 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1087-1100,共14页
The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple fa... The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple factors of the formation conditions make the parameter difficult to be accurately predicted by the conventional methods in tight gas reservoirs.In this study,a new model was derived to calculate Swir based on the capillary model and the fractal theory.The model incorporated different types of immobile water and considered the stress effect.The dead or stationary water(DSW) was considered in this model,which described the phenomena of water trapped in the dead-end pores due to detour flow and complex pore structures.The water film,stress effect and formation temperature were also considered in the proposed model.The results calculated by the proposed model are in a good agreement with the experimental data.This proves that for tight sandstone gas reservoirs the Swir calculated from the new model is more accurate.The irreducible water saturation calculated from the new model reveals that Swir is controlled by the critical capillary radius,DSW coefficient,effective stress and formation temperature. 展开更多
关键词 Fractal theory Stress dependence effect capillary model Tight sandstone gas reservoir Irreducible water saturation
下载PDF
Wet Transfer Model of Woven Fabric
6
作者 王其 张瑞寅 《Journal of Donghua University(English Edition)》 EI CAS 2006年第1期108-110,共3页
To investigate wet permeability of woven fabric, a wet transfer model of woven fabric is built up and by means of the model, the main factors which have significant influences on its wet permeability function, includi... To investigate wet permeability of woven fabric, a wet transfer model of woven fabric is built up and by means of the model, the main factors which have significant influences on its wet permeability function, including liquid/material contact angle, fiber diameter, fiber cross-section configuration, the number of fibers, yarn’s twisting angle and woven density, are discussed. Finally it is derived from the argument that optimal design of wet transfer function of woven fabric can be obtained. 展开更多
关键词 capillary action woven model wick rate fluid rate.
下载PDF
Effect of absorption boundary layer on nonlinear flow in low permeability porous media 被引量:6
7
作者 王学武 杨正明 +1 位作者 齐亚东 黄延章 《Journal of Central South University》 SCIE EI CAS 2011年第4期1299-1303,共5页
Taking low permeability cores of Daqing oilfield for example,the flow characteristics at low velocity were studied with the self-designed micro-flux measuring instrument.Considering the throat distribution and capilla... Taking low permeability cores of Daqing oilfield for example,the flow characteristics at low velocity were studied with the self-designed micro-flux measuring instrument.Considering the throat distribution and capillary model,the thickness of fluid boundary layer under different pressure gradients was calculated,and the mechanism and influencing factors of nonlinear percolation were discussed.The results show that the percolation curve of ultra-low rocks is nonlinear,and apparent permeability is not a constant which increases with pressure gradient.The absorption boundary layer decreases with the increase of pressure gradient,and changes significantly especially in low pressure gradient,which is the essence of nonlinear percolation.The absorption boundary layer is also found to be impacted by the surface property of rocks. 展开更多
关键词 low permeability reservoirs PERCOLATION absorption boundary layer capillary model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部