Coronal shear fractures of the femoral neck (CSFF) are the most challenging to treat among proximal femur fractures, directly affecting the life expectancy of patients with osteoporosis. However, an adequate osteosynt...Coronal shear fractures of the femoral neck (CSFF) are the most challenging to treat among proximal femur fractures, directly affecting the life expectancy of patients with osteoporosis. However, an adequate osteosynthesis method has not been elucidated yet. This study investigated the displacement direction of the femoral head fragment and its effect on the bone using finite element method. A finite element model for CSFF was developed from CT image data of a patient with osteoporosis using Mechanical Finder (ver. 11). Subsequently, finite element analyses were performed on six osteosynthesis models under maximum load applied during walking. The compressive stresses, tensile stresses, and compressive strains of each model were examined. The results suggested that the compressive and tensile stress distributions were concentrated on the anterior side of the femoral neck. Compressive strain distribution in the femoral head and neck was concentrated in four areas: at the tip of the blade or lag screw, the anteroinferior side of the blade or lag screw near the fracture site, and the upper right and lower left near the junction of the blade or lag screw and nail. Thus, the distribution of both these stresses revealed that the femoral head fragment was prone to anterior and inferior displacement. Distribution of compressive strains revealed the direction of the stress exerted by the osteosynthetic implant on the bone. The same results were observed in all osteosynthetic implants;thus, the findings could lay the foundation for developing methods for placing osteosynthetic implants less prone to displacement and the osteosynthetic implants themselves. In particular, the study provides insight into the optimal treatment of CSFF.展开更多
Coronal shear fractures of the distal humerus are rare,complex fractures that can be technically challenging to manage. They usually result from a low-energy fall and direct compression of the distal humerus by the ra...Coronal shear fractures of the distal humerus are rare,complex fractures that can be technically challenging to manage. They usually result from a low-energy fall and direct compression of the distal humerus by the radial head in a hyper-extended or semi-flexed elbow or from spontaneous reduction of a posterolateral subluxation or dislocation. Due to the small number of soft tissue attachments at this site, almost all of these fractures are displaced. The incidence of distal humeral coronal shear fractures is higher among women because of the higher rate of osteoporosis in women and the difference in carrying angle between men and women. Distal humeral coronal shear fractures may occur in isolation, may be part of a complex elbow injury, or may be associated with injuries proximal or distal to the elbow. An associated lateral collateral ligament injury is seen in up to 40% and an associated radial head fracture is seen in up to 30% of these fractures. Given the complex nature of distal humeral coronal shear fractures, there is preference for operative management. Operative fixation leads to stable anatomic reduction, restores articular congruity, and allows initiation of early range-of-motion movements in the majority of cases. Several surgical exposure and fixation techniques are available to reconstruct the articular surface fol owing distal humeral coronal shear fractures. The lateral extensile approach and fixation with countersunk headless compression screws placed in an anterior-to-posterior fashion are commonly used. We have found a two-incision approach(direct anterior and lateral) that results in less soft tissue dissection and better outcomes than the lateral extensile approach in our experience. Stiffness, pain, articular incongruity, arthritis, and ulnohumeral instability may result if reduction is non-anatomic or if fixation fails.展开更多
BACKGROUND Coronal shear fractures of the distal humerus are rare injuries and are technically challenging to manage.Open reduction and internal fixation(ORIF)has become the preferred treatment because it provides ana...BACKGROUND Coronal shear fractures of the distal humerus are rare injuries and are technically challenging to manage.Open reduction and internal fixation(ORIF)has become the preferred treatment because it provides anatomical reduction,stable internal fixation,and early motion,but the optimal surgical approach remains controversial.CASE SUMMARY We report three cases of coronal shear fractures of the distal humerus treated successfully by ORIF via a novel surgical approach,in which lateral epicondyle osteotomy was performed based on the extended lateral approach.We named the novel surgical approach the lateral epicondyle osteotomy approach.All patients underwent surgical treatment and were discharged successfully.All patients had excellent functional results according to the Mayo elbow performance score.The average range of motion was 118°in flexion/extension and 172°in pronation/supination.Only case 2 had a complication,which was implant prolapse.CONCLUSION We demonstrated that the lateral epicondyle osteotomy approach in ORIF is effective and safe for coronal shear fractures of the distal humerus.展开更多
文摘Coronal shear fractures of the femoral neck (CSFF) are the most challenging to treat among proximal femur fractures, directly affecting the life expectancy of patients with osteoporosis. However, an adequate osteosynthesis method has not been elucidated yet. This study investigated the displacement direction of the femoral head fragment and its effect on the bone using finite element method. A finite element model for CSFF was developed from CT image data of a patient with osteoporosis using Mechanical Finder (ver. 11). Subsequently, finite element analyses were performed on six osteosynthesis models under maximum load applied during walking. The compressive stresses, tensile stresses, and compressive strains of each model were examined. The results suggested that the compressive and tensile stress distributions were concentrated on the anterior side of the femoral neck. Compressive strain distribution in the femoral head and neck was concentrated in four areas: at the tip of the blade or lag screw, the anteroinferior side of the blade or lag screw near the fracture site, and the upper right and lower left near the junction of the blade or lag screw and nail. Thus, the distribution of both these stresses revealed that the femoral head fragment was prone to anterior and inferior displacement. Distribution of compressive strains revealed the direction of the stress exerted by the osteosynthetic implant on the bone. The same results were observed in all osteosynthetic implants;thus, the findings could lay the foundation for developing methods for placing osteosynthetic implants less prone to displacement and the osteosynthetic implants themselves. In particular, the study provides insight into the optimal treatment of CSFF.
文摘Coronal shear fractures of the distal humerus are rare,complex fractures that can be technically challenging to manage. They usually result from a low-energy fall and direct compression of the distal humerus by the radial head in a hyper-extended or semi-flexed elbow or from spontaneous reduction of a posterolateral subluxation or dislocation. Due to the small number of soft tissue attachments at this site, almost all of these fractures are displaced. The incidence of distal humeral coronal shear fractures is higher among women because of the higher rate of osteoporosis in women and the difference in carrying angle between men and women. Distal humeral coronal shear fractures may occur in isolation, may be part of a complex elbow injury, or may be associated with injuries proximal or distal to the elbow. An associated lateral collateral ligament injury is seen in up to 40% and an associated radial head fracture is seen in up to 30% of these fractures. Given the complex nature of distal humeral coronal shear fractures, there is preference for operative management. Operative fixation leads to stable anatomic reduction, restores articular congruity, and allows initiation of early range-of-motion movements in the majority of cases. Several surgical exposure and fixation techniques are available to reconstruct the articular surface fol owing distal humeral coronal shear fractures. The lateral extensile approach and fixation with countersunk headless compression screws placed in an anterior-to-posterior fashion are commonly used. We have found a two-incision approach(direct anterior and lateral) that results in less soft tissue dissection and better outcomes than the lateral extensile approach in our experience. Stiffness, pain, articular incongruity, arthritis, and ulnohumeral instability may result if reduction is non-anatomic or if fixation fails.
文摘BACKGROUND Coronal shear fractures of the distal humerus are rare injuries and are technically challenging to manage.Open reduction and internal fixation(ORIF)has become the preferred treatment because it provides anatomical reduction,stable internal fixation,and early motion,but the optimal surgical approach remains controversial.CASE SUMMARY We report three cases of coronal shear fractures of the distal humerus treated successfully by ORIF via a novel surgical approach,in which lateral epicondyle osteotomy was performed based on the extended lateral approach.We named the novel surgical approach the lateral epicondyle osteotomy approach.All patients underwent surgical treatment and were discharged successfully.All patients had excellent functional results according to the Mayo elbow performance score.The average range of motion was 118°in flexion/extension and 172°in pronation/supination.Only case 2 had a complication,which was implant prolapse.CONCLUSION We demonstrated that the lateral epicondyle osteotomy approach in ORIF is effective and safe for coronal shear fractures of the distal humerus.