CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for C...CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However. rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.展开更多
In this work, a series of polyethyleneimine (PEI) functionalized commercial silica gel were prepared by wet impregnation method and used as CO2 sorbent. The as-prepared sorbents were characterized by N2 adsorption, ...In this work, a series of polyethyleneimine (PEI) functionalized commercial silica gel were prepared by wet impregnation method and used as CO2 sorbent. The as-prepared sorbents were characterized by N2 adsorption, FT-1R and SEM techniques. CO2 capture was tested in a fixed bed reactor using a simulated flue gas containing 15.1% CO2 in a temperature range of 25-100 ~C. The effects of sorption temperature and amine content on CO2 uptake of the adsorbents were investigated. The silica gel with a 30 wt% PEI loading manifested the largest CO2 uptake of 93.4 mgcoz/gadsorbent (equal to 311.3 mg^oz/gPEI) among the tested sorbents under the conditions of 15.1% (v/v) CO2 in N2 at 75 ~C and atmospheric pressure. Moreover, it was rather low-cost. In addition, the PEI-impregnated silica gel exhibited stable adsorption-desorption behavior during 5 consecutive test cycles. These results suggest that the PEI-impregnated silica gel is a promising and cost-effective sorbent for CO2 capture from flue gas and other stationary sources with low CO2 concentration.展开更多
A series of oxygen permeable dual-phase composite oxides 60 wt% Ce0.8Gd0.2O2-δ-40 wt% LnBaCo2O5+δ (CGO-LBCO, Ln = La, Pr, Nd, Sin, Gd and Y) were synthesized through a sol-gel route and effects of the Ln3+ catio...A series of oxygen permeable dual-phase composite oxides 60 wt% Ce0.8Gd0.2O2-δ-40 wt% LnBaCo2O5+δ (CGO-LBCO, Ln = La, Pr, Nd, Sin, Gd and Y) were synthesized through a sol-gel route and effects of the Ln3+ cations on their phase structure, oxygen permeability and chemical stability against CO2 were investigated systemically by XRD, SEM, TG-DSC and oxygen permeation experiments. XRD patterns reveal that the larger Ln3+ cations (La3+, Pr3+ and Nd3+) successfully stabilized the double-layered perovskite structure of sintered LBCO, while the smaller ones (Sm3+, Gd3+, and Y3+) resulted in the partial decomposition of LBCO with some impurities formed. CGO-PBCO yields the highest oxygen permeation flux, reaching 2.8× 10^-7 mol.s-1.cm-2 at 925 ℃ with 1 mm thickness under air/He gradient. The TG-DSC profiles in 20 mol% CO2/N2 and oxygen permeability experiments with CO2 as sweep gas show that CGO-YBCO demonstrates the best chemical stability against CO2, possibly due to its minimum basicity. The stable oxygen permeation flux of CGO-YBCO under CO2 atmosphere reveals its potential application in the oxy-fuel combustion route for CO2 capture.展开更多
In this contribution, a novel high-temperature CO_2 adsorbent consisting of Mg-Al layered double hydroxide (LDH) and graphene oxide (GO) nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was ...In this contribution, a novel high-temperature CO_2 adsorbent consisting of Mg-Al layered double hydroxide (LDH) and graphene oxide (GO) nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was synthesized based on the electrostatically driven self-assembly between positively charged Mg-Al LDH single sheet and negatively charged GO monolayer. The characteristics of this novel adsorbent were investigated using XRD, FE-SEM, HRTEM, FT-IR, BET and TGA. The results showed that both the CO_2 adsorption capacity and the multi- cycle stability of LDH were increased with the addition of GO owing to the enhanced particle dispersion and stabilization. In particular, the absolute CO_2 capture capacity of LDH was increased by more than twice by adding 6.54 wt% GO as support. GO appeared to be especially effective for supporting LDH sheets. Moreover, the CO_2 capture capacity of the adsorbent could be further increased by doping with 15 wt% K_2CO_3. This work demonstrated a new approach for the preparation of LDH-based hybrid-type adsorbents for CO2 capture.展开更多
Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of tran...Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.展开更多
As atmospheric CO_2 levels rise, the development of physical or chemical adsorbents for CO_2 capture and separation is of great importance on the way towards a sustainable low-carbon future. Porous organic polymers ar...As atmospheric CO_2 levels rise, the development of physical or chemical adsorbents for CO_2 capture and separation is of great importance on the way towards a sustainable low-carbon future. Porous organic polymers are promising candidates for CO_2 capture materials owing to their structural flexibility, high surface area, and high stability. In this review, we highlight high-performance porous organic polymers for CO_2 capture and summarize the strategies to enhance CO_2 uptake and selectivity, such as increasing surface area, increasing interaction between porous organic polymers and CO_2, and pore surface functionalization.展开更多
A flexible metal-organic framework of la Cu(FMA)(4,4'-Bpe)0.s (FMA=fumarate; 4,4'Bpe=trans-bis-(4-pyridyl)ethylene) that exhibits guest molecule-controlled gate-opening adsorption has been reported, in which...A flexible metal-organic framework of la Cu(FMA)(4,4'-Bpe)0.s (FMA=fumarate; 4,4'Bpe=trans-bis-(4-pyridyl)ethylene) that exhibits guest molecule-controlled gate-opening adsorption has been reported, in which the flexible pores can be enlarged by CO2 molecules rather than CH4 and N2 under a certain gate-opening pressure. The CO2 uptake can be sharply improved from 6.85 cm3 gq at 0.60 atm to 33.7 cm3 g^-1 at 1 atm due to the gate-opening effect, thus resulting in the notably enhanced adsorption selectivities for CO2/CH4 (32:1, v/v) and CO2/N2 (48:1, v/v) separations at room temperature.展开更多
To investigate the relative CO2 capture performance of"molecular basket" type solid amine sorbents with varying amine structural characteristics, two model amine isomers, triethylenetetramme(TETA) and tris(2- ami...To investigate the relative CO2 capture performance of"molecular basket" type solid amine sorbents with varying amine structural characteristics, two model amine isomers, triethylenetetramme(TETA) and tris(2- aminoethyl)-amine(TAEA), were chosen alongside mesoporous silica SBA-15 as a support. The CO2 capture perfor- mance of each amine derivative was evaluated using a breakthrough method with a fixed-bed reactor. The results show that, in the absence of moisture, the SBA-TETA sorbents show better CO2 capture performance than the SBA-TAEA sorbents; on the other hand, in the presence of moisture, the SBA-TAEA sorbents show slightly improved uptake compared to the SBA-TETA sorbents. The tertiary amine groups, such as those found on TAEA, are known to be un-reactive with CO2 in the absence of moisture, but is activated in the presence of moisture may account for these findings.展开更多
Nowadays, energy shortage and environmental pollution issues are increasingly severe and urgent to be solved. The effective storage and use of environmentally friendly fuels and removal of harmful gases from the envir...Nowadays, energy shortage and environmental pollution issues are increasingly severe and urgent to be solved. The effective storage and use of environmentally friendly fuels and removal of harmful gases from the environment are great challenges and of great importance both for the environment protection and for human health. Porous met- al-organic frameworks (MOFs) are highly ordered crystalline materials formed by the self-assembly process of metal ions and organic ligands. Their good features such as ultrahigh porosity, large surface area, structural diversity and functionalities make them promising candidates for applications in energy and environmental fields. MOF thin films and MOF composites have also been investigated to further enhance the properties and introduce new func- tionalities. This review provides an overview of the synthesis methods of pristine MOFs, MOF thin films and MOF composites, and significant advances of MOFs in energy and environment applications such as energy storage (H2, CH4), CO2 capture and separation, adsorption removal and sensing of harmful gases in the environment.展开更多
Over the past ten years,microalgae have been investigated as promising sources of renewable energy to replace the diminishing supply of fossil fuels and mitigate the environmental pollution caused by use of fossil fue...Over the past ten years,microalgae have been investigated as promising sources of renewable energy to replace the diminishing supply of fossil fuels and mitigate the environmental pollution caused by use of fossil fuels.In addition to providing oil-based biofuels,the use of microalgae can potentially reduce environmental pollution because algae can use industrial byproducts(CO_2,NOx,wastewater,and others)as nutrition sources.However,our previous study showed that the unacceptably high cost of biofuels production,especially culturing microalgae,remains the biggest obstacle hindering the large-scale implementation of microalgae biofuels.Therefore,future efforts will likely emphasize biotechnological approaches to improve the economic feasibility of algal biofuel production.This review summarizes the progress made over the last decade in environmental applications of microalgae,combined with data on CO_2 capture,NOx biotransformation,wastewater treatment,and synergistic applications,and discusses future prospects.展开更多
基金the National Natural Science Foundation of China(Grant No.51176051 and 51106054)the National Basic Research Program of China(973 Program,No.2009CB219504-03)
文摘CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However. rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.
文摘In this work, a series of polyethyleneimine (PEI) functionalized commercial silica gel were prepared by wet impregnation method and used as CO2 sorbent. The as-prepared sorbents were characterized by N2 adsorption, FT-1R and SEM techniques. CO2 capture was tested in a fixed bed reactor using a simulated flue gas containing 15.1% CO2 in a temperature range of 25-100 ~C. The effects of sorption temperature and amine content on CO2 uptake of the adsorbents were investigated. The silica gel with a 30 wt% PEI loading manifested the largest CO2 uptake of 93.4 mgcoz/gadsorbent (equal to 311.3 mg^oz/gPEI) among the tested sorbents under the conditions of 15.1% (v/v) CO2 in N2 at 75 ~C and atmospheric pressure. Moreover, it was rather low-cost. In addition, the PEI-impregnated silica gel exhibited stable adsorption-desorption behavior during 5 consecutive test cycles. These results suggest that the PEI-impregnated silica gel is a promising and cost-effective sorbent for CO2 capture from flue gas and other stationary sources with low CO2 concentration.
基金supported by the National Natural Science Foundation of China(51004069 and 51474145)the National Science Fund for Distinguished Young Scholars(51225401)
文摘A series of oxygen permeable dual-phase composite oxides 60 wt% Ce0.8Gd0.2O2-δ-40 wt% LnBaCo2O5+δ (CGO-LBCO, Ln = La, Pr, Nd, Sin, Gd and Y) were synthesized through a sol-gel route and effects of the Ln3+ cations on their phase structure, oxygen permeability and chemical stability against CO2 were investigated systemically by XRD, SEM, TG-DSC and oxygen permeation experiments. XRD patterns reveal that the larger Ln3+ cations (La3+, Pr3+ and Nd3+) successfully stabilized the double-layered perovskite structure of sintered LBCO, while the smaller ones (Sm3+, Gd3+, and Y3+) resulted in the partial decomposition of LBCO with some impurities formed. CGO-PBCO yields the highest oxygen permeation flux, reaching 2.8× 10^-7 mol.s-1.cm-2 at 925 ℃ with 1 mm thickness under air/He gradient. The TG-DSC profiles in 20 mol% CO2/N2 and oxygen permeability experiments with CO2 as sweep gas show that CGO-YBCO demonstrates the best chemical stability against CO2, possibly due to its minimum basicity. The stable oxygen permeation flux of CGO-YBCO under CO2 atmosphere reveals its potential application in the oxy-fuel combustion route for CO2 capture.
基金supported by the Fundamental Research Funds for the Central Universities(BLYJ201509)the Fundamental Research Funds for the Central Universities(TD-JC-2013-3)+4 种基金the Program for New Century Excellent Talents in University(NCET-12-0787)Beijing Nova Programme(Z131109000413013)the National Natural Science Foundation of China(51308045)the Foundation of State Key Laboratory of Coal Conversion(Grant No.J14-15-309)Institute of Coal Chemistry,Chinese Academy of Sciences
文摘In this contribution, a novel high-temperature CO_2 adsorbent consisting of Mg-Al layered double hydroxide (LDH) and graphene oxide (GO) nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was synthesized based on the electrostatically driven self-assembly between positively charged Mg-Al LDH single sheet and negatively charged GO monolayer. The characteristics of this novel adsorbent were investigated using XRD, FE-SEM, HRTEM, FT-IR, BET and TGA. The results showed that both the CO_2 adsorption capacity and the multi- cycle stability of LDH were increased with the addition of GO owing to the enhanced particle dispersion and stabilization. In particular, the absolute CO_2 capture capacity of LDH was increased by more than twice by adding 6.54 wt% GO as support. GO appeared to be especially effective for supporting LDH sheets. Moreover, the CO_2 capture capacity of the adsorbent could be further increased by doping with 15 wt% K_2CO_3. This work demonstrated a new approach for the preparation of LDH-based hybrid-type adsorbents for CO2 capture.
文摘Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.
文摘As atmospheric CO_2 levels rise, the development of physical or chemical adsorbents for CO_2 capture and separation is of great importance on the way towards a sustainable low-carbon future. Porous organic polymers are promising candidates for CO_2 capture materials owing to their structural flexibility, high surface area, and high stability. In this review, we highlight high-performance porous organic polymers for CO_2 capture and summarize the strategies to enhance CO_2 uptake and selectivity, such as increasing surface area, increasing interaction between porous organic polymers and CO_2, and pore surface functionalization.
基金supported by an award AX-1730 from the Welch Foundation (BC)
文摘A flexible metal-organic framework of la Cu(FMA)(4,4'-Bpe)0.s (FMA=fumarate; 4,4'Bpe=trans-bis-(4-pyridyl)ethylene) that exhibits guest molecule-controlled gate-opening adsorption has been reported, in which the flexible pores can be enlarged by CO2 molecules rather than CH4 and N2 under a certain gate-opening pressure. The CO2 uptake can be sharply improved from 6.85 cm3 gq at 0.60 atm to 33.7 cm3 g^-1 at 1 atm due to the gate-opening effect, thus resulting in the notably enhanced adsorption selectivities for CO2/CH4 (32:1, v/v) and CO2/N2 (48:1, v/v) separations at room temperature.
基金Supported by the Natural Science Foundation of Zhejiang Province, China(Nos.LQ13G020010, LY16B070001) and the National Natural Science Foundation of China(No.21203167).
文摘To investigate the relative CO2 capture performance of"molecular basket" type solid amine sorbents with varying amine structural characteristics, two model amine isomers, triethylenetetramme(TETA) and tris(2- aminoethyl)-amine(TAEA), were chosen alongside mesoporous silica SBA-15 as a support. The CO2 capture perfor- mance of each amine derivative was evaluated using a breakthrough method with a fixed-bed reactor. The results show that, in the absence of moisture, the SBA-TETA sorbents show better CO2 capture performance than the SBA-TAEA sorbents; on the other hand, in the presence of moisture, the SBA-TAEA sorbents show slightly improved uptake compared to the SBA-TETA sorbents. The tertiary amine groups, such as those found on TAEA, are known to be un-reactive with CO2 in the absence of moisture, but is activated in the presence of moisture may account for these findings.
文摘Nowadays, energy shortage and environmental pollution issues are increasingly severe and urgent to be solved. The effective storage and use of environmentally friendly fuels and removal of harmful gases from the environment are great challenges and of great importance both for the environment protection and for human health. Porous met- al-organic frameworks (MOFs) are highly ordered crystalline materials formed by the self-assembly process of metal ions and organic ligands. Their good features such as ultrahigh porosity, large surface area, structural diversity and functionalities make them promising candidates for applications in energy and environmental fields. MOF thin films and MOF composites have also been investigated to further enhance the properties and introduce new func- tionalities. This review provides an overview of the synthesis methods of pristine MOFs, MOF thin films and MOF composites, and significant advances of MOFs in energy and environment applications such as energy storage (H2, CH4), CO2 capture and separation, adsorption removal and sensing of harmful gases in the environment.
基金supported jointly by the National Natural Science Foundation of China(Grant Nos.31770128&31700107)the Hubei Provincial Natural Science Foundation(Grant No.2017CFA021)
文摘Over the past ten years,microalgae have been investigated as promising sources of renewable energy to replace the diminishing supply of fossil fuels and mitigate the environmental pollution caused by use of fossil fuels.In addition to providing oil-based biofuels,the use of microalgae can potentially reduce environmental pollution because algae can use industrial byproducts(CO_2,NOx,wastewater,and others)as nutrition sources.However,our previous study showed that the unacceptably high cost of biofuels production,especially culturing microalgae,remains the biggest obstacle hindering the large-scale implementation of microalgae biofuels.Therefore,future efforts will likely emphasize biotechnological approaches to improve the economic feasibility of algal biofuel production.This review summarizes the progress made over the last decade in environmental applications of microalgae,combined with data on CO_2 capture,NOx biotransformation,wastewater treatment,and synergistic applications,and discusses future prospects.