We present here a high-order numerical formula for approximating the Caputo fractional derivative of order𝛼for 0<α<1.This new formula is on the basis of the third degree Lagrange interpolating polynomia...We present here a high-order numerical formula for approximating the Caputo fractional derivative of order𝛼for 0<α<1.This new formula is on the basis of the third degree Lagrange interpolating polynomial and may be used as a powerful tool in solving some kinds of fractional ordinary/partial diff erential equations.In comparison with the previous formulae,the main superiority of the new formula is its order of accuracy which is 4−α,while the order of accuracy of the previous ones is less than 3.It must be pointed out that the proposed formula and other existing formulae have almost the same computational cost.The eff ectiveness and the applicability of the proposed formula are investigated by testing three distinct numerical examples.Moreover,an application of the new formula in solving some fractional partial diff erential equations is presented by constructing a fi nite diff erence scheme.A PDE-based image denoising approach is proposed to demonstrate the performance of the proposed scheme.展开更多
This study focuses on the dynamics of drug concentration in the blood.In general,the concentration level of a drug in the blood is evaluated by themean of an ordinary and first-order differential equation.More precise...This study focuses on the dynamics of drug concentration in the blood.In general,the concentration level of a drug in the blood is evaluated by themean of an ordinary and first-order differential equation.More precisely,it is solved through an initial value problem.We proposed a newmodeling technique for studying drug concentration in blood dynamics.This technique is based on two fractional derivatives,namely,Caputo and Caputo-Fabrizio derivatives.We first provided comprehensive and detailed proof of the existence of at least one solution to the problem;we later proved the uniqueness of the existing solution.The proof was written using the Caputo-Fabrizio fractional derivative and some fixed-point techniques.Stability via theUlam-Hyers(UH)technique was also investigated.The application of the proposedmodel on two real data sets revealed that the Caputo derivative wasmore suitable in this study.Indeed,for the first data set,the model based on the Caputo derivative yielded a Mean Squared Error(MSE)of 0.03095 with a corresponding best value of fractional order of derivative of 1.00360.Caputo-Fabrizio-basedderivative appeared to be the second-best method for the problem,with an MSE of 0.04324 for a corresponding best fractional derivative order of 0.43532.For the second experiment,Caputo derivative-based model still performed the best as it yielded an MSE of 0.04066,whereas the classical and the Caputo-Fabrizio methods were tied with the same MSE of 0.07299.Another interesting finding was that the MSE yielded by the Caputo-Fabrizio fractional derivative coincided with the MSE obtained from the classical approach.展开更多
In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The trunc...In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The truncation error estimates and the properties of the coeffcients of all these discretisations are analysed in more detail.Finally,the theoretical analyses areverifiedby thenumerical examples.展开更多
In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagran...In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.展开更多
In this paper,we propose a fast second-order approximation to the variable-order(VO)Caputo fractional derivative,which is developed based on L2-1σformula and the exponential-sum-approximation technique.The fast evalu...In this paper,we propose a fast second-order approximation to the variable-order(VO)Caputo fractional derivative,which is developed based on L2-1σformula and the exponential-sum-approximation technique.The fast evaluation method can achieve the second-order accuracy and further reduce the computational cost and the acting memory for the VO Caputo fractional derivative.This fast algorithm is applied to construct a relevant fast temporal second-order and spatial fourth-order scheme(F L2-1σscheme)for the multi-dimensional VO time-fractional sub-diffusion equations.Theoretically,F L2-1σscheme is proved to fulfill the similar properties of the coefficients as those of the well-studied L2-1σscheme.Therefore,F L2-1σscheme is strictly proved to be unconditionally stable and convergent.A sharp decrease in the computational cost and the acting memory is shown in the numerical examples to demonstrate the efficiency of the proposed method.展开更多
In this paper, we discuss the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem for a sum...In this paper, we discuss the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem for a sum of three operators due to Dhage, and is well illustrated with the aid of an example.展开更多
The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential e...The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach.展开更多
In this research,novel epidemic models based on fractional calculus are developed by utilizing the Caputo and Atangana-Baleanu(AB)derivatives.These models integrate vaccination effects,additional safety measures,home ...In this research,novel epidemic models based on fractional calculus are developed by utilizing the Caputo and Atangana-Baleanu(AB)derivatives.These models integrate vaccination effects,additional safety measures,home and hospital isolation,and treatment options.Fractional models are particularly significant as they provide a more comprehensive understanding of epidemic diseases and can account for non-locality and memory effects.Equilibrium points of the model are calculated,including the disease-free and endemic equilibrium points,and the basic reproduction number R0 is computed using the next-generation matrix approach.Results indicate that the epidemic becomes endemic when R0 is greater than unity,and it goes extinct when it is less than unity.The positiveness and boundedness of the solutions of model are verified.The Routh-Hurwitz technique is utilized to analyze the local stability of equilibrium points.The Lyapunov function and the LaSalle’s principle are used to demonstrate the global stability of equilibrium points.Numerical schemes are proposed,and their validity is established by comparing them to the fourth-order Runge-Kutta(RK4)method.Numerical simulations are performed using the Adams-Bashforth-Moulton predictor-corrector algorithm for the Caputo time-fractional derivative and the Toufik-Atangana numerical technique for the AB time-fractional derivative.The study looks at how the quarantine policy affected different human population groups.On the basis of these findings,a strict quarantine policy voluntarily implemented by an informed human population can help reduce the pandemic’s spread.Additionally,vaccination efforts become a crucial tool in the fight against diseases.We can greatly lower the number of susceptible people and develop a shield of immunity in the population by guaranteeing common access to vaccinations and boosting vaccination awareness.Moreover,the graphical representations of the fractional models are also developed.展开更多
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a...In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.展开更多
Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problem...Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problems. The results about fractional derivative multivariable grey models are very few at present. In this paper, a multivariable Caputo fractional derivative grey model with convolution integral CFGMC(q, N) is proposed. First, the Caputo fractional difference is used to discretize the model, and the least square method is used to solve the parameters. The orders of accumulations and differential equations are determined by using particle swarm optimization(PSO). Then, the analytical solution of the model is obtained by using the Laplace transform, and the convergence and divergence of series in analytical solutions are also discussed. Finally, the CFGMC(q, N) model is used to predict the municipal solid waste(MSW). Compared with other competition models, the model has the best prediction effect. This study enriches the model form of the multivariable grey model, expands the scope of application, and provides a new idea for the development of fractional derivative grey model.展开更多
By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives ...By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives and mixed fractional integrals,supplemented with nonlocal coupled fractional integral boundary conditions.An example is also constructed for the illustration of the obtained results.展开更多
This work considers a generalized fuzzy fractional smoking model with Caputo gHtypes fractional derivatives upon considering the case of uncertainty quantification.The disease-free equilibrium point and stability of t...This work considers a generalized fuzzy fractional smoking model with Caputo gHtypes fractional derivatives upon considering the case of uncertainty quantification.The disease-free equilibrium point and stability of the equilibrium point have been discussed for the fuzzy nonlinear fractional smoking model.The analytical proofs for the existence and uniqueness of the proposed model are concerned with the help of the fixed-point theorem,Banach contraction,and Schauder theorem.A robust double parametric approach with a generalized transform is used to study the behavior of the fuzzy fractional model in an uncertain context and obtain the convergence analysis of the study in a crisp context.Finally,the obtained results of the proposed model have been validated with the Runge-Kutta method of fourth order in crisp case(s=1,l=O).展开更多
In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional ...In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.展开更多
A class of time fractional partial differential equations is considered, which in- cludes a time fractional diffusion equation, a time fractional reaction-diffusion equation, a time fractional advection-diffusion equa...A class of time fractional partial differential equations is considered, which in- cludes a time fractional diffusion equation, a time fractional reaction-diffusion equation, a time fractional advection-diffusion equation, and their corresponding integer-order partial differential equations. The fundamental solutions to the Cauchy problem in a whole-space domain and the signaling problem in a half-space domain are obtained by using Fourier- Laplace transforms and their inverse transforms. The appropriate structures of the Green functions are provided. On the other hand, the solutions in the form of a series to the initial and boundary value problems in a bounded-space domain are derived by the sine- Laplace or cosine-Laplace transforms. Two examples are presented to show applications of the present technique.展开更多
To better describe the phenomenon of non-Fourier heat conduction, the fractional Cattaneo heat equation is introduced from the generalized Cattaneo model with two fractional derivatives of different orders. The anomal...To better describe the phenomenon of non-Fourier heat conduction, the fractional Cattaneo heat equation is introduced from the generalized Cattaneo model with two fractional derivatives of different orders. The anomalous heat conduction under the Neumann boundary condition in a semi-infinity medium is investigated. Exact solutions are obtained in series form of the H-function by using the Laplace transform method. Finally, numerical examples are presented graphically when different kinds of surface temperature gradient are given. The effects of fractional parameters are also discussed.展开更多
In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The pr...In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the genera]ised two-dimensional DTM is effective for the coupled equations.展开更多
With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research...With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research. In this paper, the dynamic behavior including the chaotic properties of fractional order Duffing systems is extensively inves- tigated. With the stability criterion of linear fractional systems, the synchronization of a fractional non-autonomous system is obtained. Specifically, an effective singly active control is proposed and used to synchronize a fractional order Duffing system. The nu- merical results demonstrate the effectiveness of the proposed methods.展开更多
We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem {D α0+u(x)=f(x,u(x)) ,0〈x〈1,3〈α≤4u(0)=α0, u″(0)=α2u(1)=β0,u″(1)β2where Dα...We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem {D α0+u(x)=f(x,u(x)) ,0〈x〈1,3〈α≤4u(0)=α0, u″(0)=α2u(1)=β0,u″(1)β2where Dα 0 +u is Caputo fractional derivative and α0, α2, β0, β2 is not zero at all, and f : [0, 1] × R→R is continuous. The calculated numerical results show reliability and efficiency of the algorithm given. The numerical procedure is tested on lineax and nonlinear problems.展开更多
The aim of this paper is to obtain the numerical solutions of fractional Volterra integrodifferential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points.We convert the fracti...The aim of this paper is to obtain the numerical solutions of fractional Volterra integrodifferential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points.We convert the fractional order integro-differential equation into integral equation by fractional order integral,and transfer the integro equations into a system of linear equations by the Gausssian quadrature.We furthermore perform the convergence analysis and prove the spectral accuracy of the proposed method in L∞norm.Two numerical examples demonstrate the high accuracy and fast convergence of the method at last.展开更多
Anomalous transport in magnetically confined plasmas is investigated using temporal fractional transport equations.The use of temporal fractional transport equations means that the order of the partial derivative with...Anomalous transport in magnetically confined plasmas is investigated using temporal fractional transport equations.The use of temporal fractional transport equations means that the order of the partial derivative with respect to time is a fraction. In this case, the Caputo fractional derivative relative to time is utilized, because it preserves the form of the initial conditions. A numerical calculation reveals that the fractional order of the temporal derivative α(α ∈(0, 1), sub-diffusive regime) controls the diffusion rate. The temporal fractional derivative is related to the fact that the evolution of a physical quantity is affected by its past history, depending on what are termed memory effects. The magnitude of α is a measure of such memory effects. When α decreases, so does the rate of particle diffusion due to memory effects. As a result,if a system initially has a density profile without a source, then the smaller the α is, the more slowly the density profile approaches zero. When a source is added, due to the balance of the diffusion and fueling processes, the system reaches a steady state and the density profile does not evolve. As α decreases, the time required for the system to reach a steady state increases. In magnetically confined plasmas, the temporal fractional transport model can be applied to off-axis heating processes. Moreover, it is found that the memory effects reduce the rate of energy conduction and hollow temperature profiles can be sustained for a longer time in sub-diffusion processes than in ordinary diffusion processes.展开更多
文摘We present here a high-order numerical formula for approximating the Caputo fractional derivative of order𝛼for 0<α<1.This new formula is on the basis of the third degree Lagrange interpolating polynomial and may be used as a powerful tool in solving some kinds of fractional ordinary/partial diff erential equations.In comparison with the previous formulae,the main superiority of the new formula is its order of accuracy which is 4−α,while the order of accuracy of the previous ones is less than 3.It must be pointed out that the proposed formula and other existing formulae have almost the same computational cost.The eff ectiveness and the applicability of the proposed formula are investigated by testing three distinct numerical examples.Moreover,an application of the new formula in solving some fractional partial diff erential equations is presented by constructing a fi nite diff erence scheme.A PDE-based image denoising approach is proposed to demonstrate the performance of the proposed scheme.
基金supported through the Annual Funding Track by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Project No.AN000273],granted after a successful application by M.A.
文摘This study focuses on the dynamics of drug concentration in the blood.In general,the concentration level of a drug in the blood is evaluated by themean of an ordinary and first-order differential equation.More precisely,it is solved through an initial value problem.We proposed a newmodeling technique for studying drug concentration in blood dynamics.This technique is based on two fractional derivatives,namely,Caputo and Caputo-Fabrizio derivatives.We first provided comprehensive and detailed proof of the existence of at least one solution to the problem;we later proved the uniqueness of the existing solution.The proof was written using the Caputo-Fabrizio fractional derivative and some fixed-point techniques.Stability via theUlam-Hyers(UH)technique was also investigated.The application of the proposedmodel on two real data sets revealed that the Caputo derivative wasmore suitable in this study.Indeed,for the first data set,the model based on the Caputo derivative yielded a Mean Squared Error(MSE)of 0.03095 with a corresponding best value of fractional order of derivative of 1.00360.Caputo-Fabrizio-basedderivative appeared to be the second-best method for the problem,with an MSE of 0.04324 for a corresponding best fractional derivative order of 0.43532.For the second experiment,Caputo derivative-based model still performed the best as it yielded an MSE of 0.04066,whereas the classical and the Caputo-Fabrizio methods were tied with the same MSE of 0.07299.Another interesting finding was that the MSE yielded by the Caputo-Fabrizio fractional derivative coincided with the MSE obtained from the classical approach.
文摘In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The truncation error estimates and the properties of the coeffcients of all these discretisations are analysed in more detail.Finally,the theoretical analyses areverifiedby thenumerical examples.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(Grant No.IRT13097)
文摘In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.
基金supported in part by research grants of the Science and Technology De-velopment Fund,Macao SAR(0122/2020/A3)University of Macao(MYRG2020-00224-FST).
文摘In this paper,we propose a fast second-order approximation to the variable-order(VO)Caputo fractional derivative,which is developed based on L2-1σformula and the exponential-sum-approximation technique.The fast evaluation method can achieve the second-order accuracy and further reduce the computational cost and the acting memory for the VO Caputo fractional derivative.This fast algorithm is applied to construct a relevant fast temporal second-order and spatial fourth-order scheme(F L2-1σscheme)for the multi-dimensional VO time-fractional sub-diffusion equations.Theoretically,F L2-1σscheme is proved to fulfill the similar properties of the coefficients as those of the well-studied L2-1σscheme.Therefore,F L2-1σscheme is strictly proved to be unconditionally stable and convergent.A sharp decrease in the computational cost and the acting memory is shown in the numerical examples to demonstrate the efficiency of the proposed method.
文摘In this paper, we discuss the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem for a sum of three operators due to Dhage, and is well illustrated with the aid of an example.
文摘The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach.
文摘In this research,novel epidemic models based on fractional calculus are developed by utilizing the Caputo and Atangana-Baleanu(AB)derivatives.These models integrate vaccination effects,additional safety measures,home and hospital isolation,and treatment options.Fractional models are particularly significant as they provide a more comprehensive understanding of epidemic diseases and can account for non-locality and memory effects.Equilibrium points of the model are calculated,including the disease-free and endemic equilibrium points,and the basic reproduction number R0 is computed using the next-generation matrix approach.Results indicate that the epidemic becomes endemic when R0 is greater than unity,and it goes extinct when it is less than unity.The positiveness and boundedness of the solutions of model are verified.The Routh-Hurwitz technique is utilized to analyze the local stability of equilibrium points.The Lyapunov function and the LaSalle’s principle are used to demonstrate the global stability of equilibrium points.Numerical schemes are proposed,and their validity is established by comparing them to the fourth-order Runge-Kutta(RK4)method.Numerical simulations are performed using the Adams-Bashforth-Moulton predictor-corrector algorithm for the Caputo time-fractional derivative and the Toufik-Atangana numerical technique for the AB time-fractional derivative.The study looks at how the quarantine policy affected different human population groups.On the basis of these findings,a strict quarantine policy voluntarily implemented by an informed human population can help reduce the pandemic’s spread.Additionally,vaccination efforts become a crucial tool in the fight against diseases.We can greatly lower the number of susceptible people and develop a shield of immunity in the population by guaranteeing common access to vaccinations and boosting vaccination awareness.Moreover,the graphical representations of the fractional models are also developed.
文摘In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.
基金supported by the National Natural Science Foundation of China (51479151,61403288)。
文摘Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problems. The results about fractional derivative multivariable grey models are very few at present. In this paper, a multivariable Caputo fractional derivative grey model with convolution integral CFGMC(q, N) is proposed. First, the Caputo fractional difference is used to discretize the model, and the least square method is used to solve the parameters. The orders of accumulations and differential equations are determined by using particle swarm optimization(PSO). Then, the analytical solution of the model is obtained by using the Laplace transform, and the convergence and divergence of series in analytical solutions are also discussed. Finally, the CFGMC(q, N) model is used to predict the municipal solid waste(MSW). Compared with other competition models, the model has the best prediction effect. This study enriches the model form of the multivariable grey model, expands the scope of application, and provides a new idea for the development of fractional derivative grey model.
基金This project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia(KEP-MSc-63-130-42).
文摘By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives and mixed fractional integrals,supplemented with nonlocal coupled fractional integral boundary conditions.An example is also constructed for the illustration of the obtained results.
文摘This work considers a generalized fuzzy fractional smoking model with Caputo gHtypes fractional derivatives upon considering the case of uncertainty quantification.The disease-free equilibrium point and stability of the equilibrium point have been discussed for the fuzzy nonlinear fractional smoking model.The analytical proofs for the existence and uniqueness of the proposed model are concerned with the help of the fixed-point theorem,Banach contraction,and Schauder theorem.A robust double parametric approach with a generalized transform is used to study the behavior of the fuzzy fractional model in an uncertain context and obtain the convergence analysis of the study in a crisp context.Finally,the obtained results of the proposed model have been validated with the Runge-Kutta method of fourth order in crisp case(s=1,l=O).
文摘In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.
基金supported by the Fundamental Research Funds for the Central Universities, South China University of Technology (No.2009ZM0050)the Research Foundation for the Doctoral Program of Higher Education of China (No. 20070561040)the Natural Science Foundation of Guangdong Province of China (No.07300823)
文摘A class of time fractional partial differential equations is considered, which in- cludes a time fractional diffusion equation, a time fractional reaction-diffusion equation, a time fractional advection-diffusion equation, and their corresponding integer-order partial differential equations. The fundamental solutions to the Cauchy problem in a whole-space domain and the signaling problem in a half-space domain are obtained by using Fourier- Laplace transforms and their inverse transforms. The appropriate structures of the Green functions are provided. On the other hand, the solutions in the form of a series to the initial and boundary value problems in a bounded-space domain are derived by the sine- Laplace or cosine-Laplace transforms. Two examples are presented to show applications of the present technique.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11102102, 11072134, and 91130017)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2009AQ014)the Independent Innovation Foundation of Shandong University, China (Grant No. 2010ZRJQ002)
文摘To better describe the phenomenon of non-Fourier heat conduction, the fractional Cattaneo heat equation is introduced from the generalized Cattaneo model with two fractional derivatives of different orders. The anomalous heat conduction under the Neumann boundary condition in a semi-infinity medium is investigated. Exact solutions are obtained in series form of the H-function by using the Laplace transform method. Finally, numerical examples are presented graphically when different kinds of surface temperature gradient are given. The effects of fractional parameters are also discussed.
基金Project supported by the Natural Science Foundation of Inner Mongolia of China (Grant No. 20080404MS0104)the Young Scientists Fund of Inner Mongolia University of China (Grant No. ND0811)
文摘In this paper, the genera]ised two-dimensiona] differentia] transform method (DTM) of solving the time-fractiona] coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the genera]ised two-dimensional DTM is effective for the coupled equations.
基金Project supported by the National Natural Science Foundation of China (No. 11171238)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Educationof China (No. IRTO0742)
文摘With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research. In this paper, the dynamic behavior including the chaotic properties of fractional order Duffing systems is extensively inves- tigated. With the stability criterion of linear fractional systems, the synchronization of a fractional non-autonomous system is obtained. Specifically, an effective singly active control is proposed and used to synchronize a fractional order Duffing system. The nu- merical results demonstrate the effectiveness of the proposed methods.
文摘We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem {D α0+u(x)=f(x,u(x)) ,0〈x〈1,3〈α≤4u(0)=α0, u″(0)=α2u(1)=β0,u″(1)β2where Dα 0 +u is Caputo fractional derivative and α0, α2, β0, β2 is not zero at all, and f : [0, 1] × R→R is continuous. The calculated numerical results show reliability and efficiency of the algorithm given. The numerical procedure is tested on lineax and nonlinear problems.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11701358,11774218)。
文摘The aim of this paper is to obtain the numerical solutions of fractional Volterra integrodifferential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points.We convert the fractional order integro-differential equation into integral equation by fractional order integral,and transfer the integro equations into a system of linear equations by the Gausssian quadrature.We furthermore perform the convergence analysis and prove the spectral accuracy of the proposed method in L∞norm.Two numerical examples demonstrate the high accuracy and fast convergence of the method at last.
基金supported by the National Key R&D Program of China (Grant No. 2022YFE03090000)the National Natural Science Foundation of China (Grant No. 11925501)the Fundamental Research Fund for the Central Universities (Grant No. DUT22ZD215)。
文摘Anomalous transport in magnetically confined plasmas is investigated using temporal fractional transport equations.The use of temporal fractional transport equations means that the order of the partial derivative with respect to time is a fraction. In this case, the Caputo fractional derivative relative to time is utilized, because it preserves the form of the initial conditions. A numerical calculation reveals that the fractional order of the temporal derivative α(α ∈(0, 1), sub-diffusive regime) controls the diffusion rate. The temporal fractional derivative is related to the fact that the evolution of a physical quantity is affected by its past history, depending on what are termed memory effects. The magnitude of α is a measure of such memory effects. When α decreases, so does the rate of particle diffusion due to memory effects. As a result,if a system initially has a density profile without a source, then the smaller the α is, the more slowly the density profile approaches zero. When a source is added, due to the balance of the diffusion and fueling processes, the system reaches a steady state and the density profile does not evolve. As α decreases, the time required for the system to reach a steady state increases. In magnetically confined plasmas, the temporal fractional transport model can be applied to off-axis heating processes. Moreover, it is found that the memory effects reduce the rate of energy conduction and hollow temperature profiles can be sustained for a longer time in sub-diffusion processes than in ordinary diffusion processes.