In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a...In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.展开更多
The Pfaff-Birkhoff variational problem and its Noether symmetry are studied in terms of Riemann-Liouville fractional derivatives of variable order. Based on the combination of variational principle and fractional calc...The Pfaff-Birkhoff variational problem and its Noether symmetry are studied in terms of Riemann-Liouville fractional derivatives of variable order. Based on the combination of variational principle and fractional calculus of variable order,the Pfaff-Birkhoff variational principle with Riemann-Liouville fractional derivatives of variable order is proposed, and the fractional Birkhoff's equations of variable order are derived. Then,the Noether 's theorem for the fractional Birkhoffian system of variable order is given. At last,an example is expressed to illustrate the application of the results.展开更多
A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable ...A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable and its (q-order and 2q-order) time derivatives. This idea is demonstrated by using several well-known fractional-order chaotic systems. Finally, a synchronization scheme is investigated for this fractional-order chaotic system via a specific state variable and its (q-order and 2q-order) time derivatives. Some examples are used to illustrate the effectiveness of the proposed synchronization method.展开更多
Fractional calculus has been widely used to study the flow of viscoelastic fluids recently,and fractional differential equations have attracted a lot of attention.However,the research has shown that the fractional equ...Fractional calculus has been widely used to study the flow of viscoelastic fluids recently,and fractional differential equations have attracted a lot of attention.However,the research has shown that the fractional equation with constant order operators has certain limitations in characterizing some physical phenomena.In this paper,the viscoelastic fluid flow of generalized Maxwell fluids in an infinite straight pipe driven by a periodic pressure gradient is investigated systematically.Consider the complexity of the material structure and multi-scale effects in the viscoelastic fluid flow.The modified time fractional Maxwell models and the corresponding governing equations with distributed/variable order time fractional derivatives are proposed.Based on the L1-approximation formula of Caputo fractional derivatives,the implicit finite difference schemes for the distributed/variable order time fractional governing equations are presented,and the numerical solutions are derived.In order to test the correctness and availability of numerical schemes,two numerical examples are established to give the exact solutions.The comparisons between the numerical solutions and the exact solutions have been made,and their high consistency indicates that the present numerical methods are effective.Then,this paper analyzes the velocity distributions of the distributed/variable order fractional Maxwell governing equations under specific conditions,and discusses the effects of the weight coefficient(α)in distributed order time fractional derivatives,the orderα(r,t)in variable fractional order derivatives,the relaxation timeλ,and the frequencyωof the periodic pressure gradient on the fluid flow velocity.Finally,the flow rates of the distributed/variable order fractional Maxwell governing equations are also studied.展开更多
An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of...An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented.Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations.And the convergence of the Euler wavelets basis is given.The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy.展开更多
With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research...With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research. In this paper, the dynamic behavior including the chaotic properties of fractional order Duffing systems is extensively inves- tigated. With the stability criterion of linear fractional systems, the synchronization of a fractional non-autonomous system is obtained. Specifically, an effective singly active control is proposed and used to synchronize a fractional order Duffing system. The nu- merical results demonstrate the effectiveness of the proposed methods.展开更多
Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been anal...Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.展开更多
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorou...We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.展开更多
This paper studies the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Ban...This paper studies the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach’s contraction principle and the Schauder’s fixed point theorem. In addition, an example is given to demonstrate the application of our main results.展开更多
In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caput...In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The results reveal that the proposed method is very effective and simple. Moreover, only a small number of shifted Legendre polynomials are needed to obtain a satisfactory result.展开更多
文摘In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.
基金National Natural Science Foundations of China(Nos.10972151,11272227,11572212)
文摘The Pfaff-Birkhoff variational problem and its Noether symmetry are studied in terms of Riemann-Liouville fractional derivatives of variable order. Based on the combination of variational principle and fractional calculus of variable order,the Pfaff-Birkhoff variational principle with Riemann-Liouville fractional derivatives of variable order is proposed, and the fractional Birkhoff's equations of variable order are derived. Then,the Noether 's theorem for the fractional Birkhoffian system of variable order is given. At last,an example is expressed to illustrate the application of the results.
文摘A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable and its (q-order and 2q-order) time derivatives. This idea is demonstrated by using several well-known fractional-order chaotic systems. Finally, a synchronization scheme is investigated for this fractional-order chaotic system via a specific state variable and its (q-order and 2q-order) time derivatives. Some examples are used to illustrate the effectiveness of the proposed synchronization method.
基金the National Natural Science Foundation of China(Nos.12172197,12171284,12120101001,and 11672163)the Fundamental Research Funds for the Central Universities(No.2019ZRJC002)。
文摘Fractional calculus has been widely used to study the flow of viscoelastic fluids recently,and fractional differential equations have attracted a lot of attention.However,the research has shown that the fractional equation with constant order operators has certain limitations in characterizing some physical phenomena.In this paper,the viscoelastic fluid flow of generalized Maxwell fluids in an infinite straight pipe driven by a periodic pressure gradient is investigated systematically.Consider the complexity of the material structure and multi-scale effects in the viscoelastic fluid flow.The modified time fractional Maxwell models and the corresponding governing equations with distributed/variable order time fractional derivatives are proposed.Based on the L1-approximation formula of Caputo fractional derivatives,the implicit finite difference schemes for the distributed/variable order time fractional governing equations are presented,and the numerical solutions are derived.In order to test the correctness and availability of numerical schemes,two numerical examples are established to give the exact solutions.The comparisons between the numerical solutions and the exact solutions have been made,and their high consistency indicates that the present numerical methods are effective.Then,this paper analyzes the velocity distributions of the distributed/variable order fractional Maxwell governing equations under specific conditions,and discusses the effects of the weight coefficient(α)in distributed order time fractional derivatives,the orderα(r,t)in variable fractional order derivatives,the relaxation timeλ,and the frequencyωof the periodic pressure gradient on the fluid flow velocity.Finally,the flow rates of the distributed/variable order fractional Maxwell governing equations are also studied.
基金The authors are grateful to the editor,the associate editor and the anonymous reviewers for their constructive and helpful comments.This work was supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY18A010026),the National Natural Science Foundation of China(No.11701304,11526117)Zhejiang Provincial Natural Science Foundation of China(No.LQ16A010006)+1 种基金the Natural Science Foundation of Ningbo City,China(No.2017A610143)the Natural Science Foundation of Ningbo City,China(2018A610195).
文摘An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented.Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations.And the convergence of the Euler wavelets basis is given.The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy.
基金Project supported by the National Natural Science Foundation of China (No. 11171238)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Educationof China (No. IRTO0742)
文摘With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research. In this paper, the dynamic behavior including the chaotic properties of fractional order Duffing systems is extensively inves- tigated. With the stability criterion of linear fractional systems, the synchronization of a fractional non-autonomous system is obtained. Specifically, an effective singly active control is proposed and used to synchronize a fractional order Duffing system. The nu- merical results demonstrate the effectiveness of the proposed methods.
文摘Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.
基金supported by NSFC Project(11301446,11271145)China Postdoctoral Science Foundation Grant(2013M531789)+3 种基金Specialized Research Fund for the Doctoral Program of Higher Education(2011440711009)Program for Changjiang Scholars and Innovative Research Team in University(IRT1179)Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(2013RS4057)the Research Foundation of Hunan Provincial Education Department(13B116)
文摘We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.
文摘This paper studies the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach’s contraction principle and the Schauder’s fixed point theorem. In addition, an example is given to demonstrate the application of our main results.
文摘In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The results reveal that the proposed method is very effective and simple. Moreover, only a small number of shifted Legendre polynomials are needed to obtain a satisfactory result.