期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
A Hybrid ESA-CCD Method for Variable-Order Time-Fractional Diffusion Equations
1
作者 Xiaoxue Lu Chunhua Zhang +1 位作者 Huiling Xue Bowen Zhong 《Journal of Applied Mathematics and Physics》 2024年第9期3053-3065,共13页
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a... In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments. 展开更多
关键词 variable-order caputo fractional derivative Combined Compact Difference Method Exponential-Sum-Approximation
下载PDF
Pfaff-Birkhoff Variational Problem and Noether Symmetry in Terms of RiemannLiouville Fractional Derivatives of Variable Order
2
作者 严斌 张毅 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期523-528,共6页
The Pfaff-Birkhoff variational problem and its Noether symmetry are studied in terms of Riemann-Liouville fractional derivatives of variable order. Based on the combination of variational principle and fractional calc... The Pfaff-Birkhoff variational problem and its Noether symmetry are studied in terms of Riemann-Liouville fractional derivatives of variable order. Based on the combination of variational principle and fractional calculus of variable order,the Pfaff-Birkhoff variational principle with Riemann-Liouville fractional derivatives of variable order is proposed, and the fractional Birkhoff's equations of variable order are derived. Then,the Noether 's theorem for the fractional Birkhoffian system of variable order is given. At last,an example is expressed to illustrate the application of the results. 展开更多
关键词 fractional Birkhoffian system Noether synunetry conserved quantity fractional derivatives of variable order
下载PDF
A specific state variable for a class of 3D continuous fractional-order chaotic systems
3
作者 周平 程元明 邝菲 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期102-106,共5页
A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable ... A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable and its (q-order and 2q-order) time derivatives. This idea is demonstrated by using several well-known fractional-order chaotic systems. Finally, a synchronization scheme is investigated for this fractional-order chaotic system via a specific state variable and its (q-order and 2q-order) time derivatives. Some examples are used to illustrate the effectiveness of the proposed synchronization method. 展开更多
关键词 fractional-order chaotic systems state variable q-order and 2q-order time derivatives chaotic synchronization
下载PDF
Numerical analysis for viscoelastic fluid flow with distributed/variable order time fractional Maxwell constitutive models 被引量:3
4
作者 Yanli QIAO Xiaoping WANG +1 位作者 Huanying XU Haitao QI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第12期1771-1786,共16页
Fractional calculus has been widely used to study the flow of viscoelastic fluids recently,and fractional differential equations have attracted a lot of attention.However,the research has shown that the fractional equ... Fractional calculus has been widely used to study the flow of viscoelastic fluids recently,and fractional differential equations have attracted a lot of attention.However,the research has shown that the fractional equation with constant order operators has certain limitations in characterizing some physical phenomena.In this paper,the viscoelastic fluid flow of generalized Maxwell fluids in an infinite straight pipe driven by a periodic pressure gradient is investigated systematically.Consider the complexity of the material structure and multi-scale effects in the viscoelastic fluid flow.The modified time fractional Maxwell models and the corresponding governing equations with distributed/variable order time fractional derivatives are proposed.Based on the L1-approximation formula of Caputo fractional derivatives,the implicit finite difference schemes for the distributed/variable order time fractional governing equations are presented,and the numerical solutions are derived.In order to test the correctness and availability of numerical schemes,two numerical examples are established to give the exact solutions.The comparisons between the numerical solutions and the exact solutions have been made,and their high consistency indicates that the present numerical methods are effective.Then,this paper analyzes the velocity distributions of the distributed/variable order fractional Maxwell governing equations under specific conditions,and discusses the effects of the weight coefficient(α)in distributed order time fractional derivatives,the orderα(r,t)in variable fractional order derivatives,the relaxation timeλ,and the frequencyωof the periodic pressure gradient on the fluid flow velocity.Finally,the flow rates of the distributed/variable order fractional Maxwell governing equations are also studied. 展开更多
关键词 distributed order time fractional derivative variable order time fractional derivative finite difference scheme viscoelastic fluid
下载PDF
Solving the Nonlinear Variable Order Fractional Differential Equations by Using Euler Wavelets 被引量:1
5
作者 Yanxin Wang Li Zhu Zhi Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第2期339-350,共12页
An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of... An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented.Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations.And the convergence of the Euler wavelets basis is given.The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy. 展开更多
关键词 EULER WAVELETS variable order fractional differential EQUATIONS caputo fractional derivativeS OPERATIONAL matrix convergence analysis.
下载PDF
Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control 被引量:1
6
作者 何桂添 罗懋康 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第5期567-582,共16页
With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research... With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research. In this paper, the dynamic behavior including the chaotic properties of fractional order Duffing systems is extensively inves- tigated. With the stability criterion of linear fractional systems, the synchronization of a fractional non-autonomous system is obtained. Specifically, an effective singly active control is proposed and used to synchronize a fractional order Duffing system. The nu- merical results demonstrate the effectiveness of the proposed methods. 展开更多
关键词 caputo fractional derivative fractional order Duffing system synchro- nization
下载PDF
Higher-order approximate solutions of fractional stochastic point kinetics equations in nuclear reactor dynamics
7
作者 S.Singh S.Saha Ray 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第3期114-126,共13页
Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been anal... Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model. 展开更多
关键词 fractional STOCHASTIC POINT reactor kinetics equations fractional CALCULUS HIGHER-order approximation caputo derivative Neutron population
下载PDF
基于矩阵解耦的精馏塔VOFFLC温控系统 被引量:4
8
作者 汪洋 江厚顺 +3 位作者 许冬进 诸昌武 杨瑞洪 杨欢 《控制工程》 CSCD 北大核心 2023年第2期262-274,291,共14页
针对复杂的精馏塔MIMO温控系统的多变量、非线性、强耦合的特点和自适应需求,设计了基于矩阵解耦精馏塔的VOFFLC系统。首先,对温控系统的多变量控制模型进行改进,利用矩阵解耦理论实现对角解耦,以此改变控制通道的特性;然后,设计基于矩... 针对复杂的精馏塔MIMO温控系统的多变量、非线性、强耦合的特点和自适应需求,设计了基于矩阵解耦精馏塔的VOFFLC系统。首先,对温控系统的多变量控制模型进行改进,利用矩阵解耦理论实现对角解耦,以此改变控制通道的特性;然后,设计基于矩阵解耦的精馏塔VOFFLC温控系统,实现精馏塔的塔顶和塔底的自适应温控;最后,采用仿真实验,对所设计的多种温控系统进行性能比较。实验结果表明,VOFFLC系统可以实现控制参数的自适应,具有更强的论域容错性和鲁棒性。 展开更多
关键词 矩阵解耦 温度控制 ITAE FLC FOPID VofFLC
下载PDF
CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS 被引量:9
9
作者 杨银 陈艳萍 黄云清 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期673-690,共18页
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorou... We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results. 展开更多
关键词 Spectral Jacobi-collocation method fractional order integro-differential equations caputo derivative
下载PDF
Existence and Uniqueness for the Boundary Value Problems of Nonlinear Fractional Differential Equation
10
作者 Yufeng Sun Zheng Zeng Jie Song 《Applied Mathematics》 2017年第3期312-323,共12页
This paper studies the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Ban... This paper studies the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach’s contraction principle and the Schauder’s fixed point theorem. In addition, an example is given to demonstrate the application of our main results. 展开更多
关键词 fractional order Differential EQUATIONS BOUNDARY Value Problem caputo fractional derivative fractional INTEGRAL Fixed Point
下载PDF
Solving a Nonlinear Multi-Order Fractional Differential Equation Using Legendre Pseudo-Spectral Method
11
作者 Yin Yang 《Applied Mathematics》 2013年第1期113-118,共6页
In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caput... In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The results reveal that the proposed method is very effective and simple. Moreover, only a small number of shifted Legendre polynomials are needed to obtain a satisfactory result. 展开更多
关键词 LEGENDRE Pseudo-Spectral Method Multi-order fractional DIFFERENTIAL EQUATIONS caputo derivative
下载PDF
带Caputo导数的变分数阶随机微分方程的Euler-Maruyama方法
12
作者 刘家惠 邵林馨 黄健飞 《应用数学和力学》 CSCD 北大核心 2023年第6期731-743,共13页
该文构造了Euler-Maruyama(EM)方法求解一类带Caputo导数的变分数阶随机微分方程.首先,证明了该方程的适定性;然后,详细推导出对应的EM方法,并对该方法进行了强收敛性的分析,通过使用EM方法的连续形式证明了其强收敛阶为β-0.5,其中β是... 该文构造了Euler-Maruyama(EM)方法求解一类带Caputo导数的变分数阶随机微分方程.首先,证明了该方程的适定性;然后,详细推导出对应的EM方法,并对该方法进行了强收敛性的分析,通过使用EM方法的连续形式证明了其强收敛阶为β-0.5,其中β是Caputo导数的阶数,且满足0.5<β<1.最后,通过数值实验验证了理论分析结果的正确性. 展开更多
关键词 变分数阶随机微分方程 caputo导数 EULER-MARUYAMA方法 强收敛性
下载PDF
一种Caputo分数阶反应-扩散方程初边值问题的隐式差分格式 被引量:6
13
作者 马亮亮 《贵州师范大学学报(自然科学版)》 CAS 2013年第2期58-61,共4页
考虑分数阶反应-扩散方程,将一阶的时间偏导数用Caputo分数阶导数替换,利用Grünwald-Letnikov型的标准近似公式以及Caputo型分数阶导数与Grünwald-Letnikov型分数阶导数的转化关系,给出了一种计算有效的隐式差分格式,并证明... 考虑分数阶反应-扩散方程,将一阶的时间偏导数用Caputo分数阶导数替换,利用Grünwald-Letnikov型的标准近似公式以及Caputo型分数阶导数与Grünwald-Letnikov型分数阶导数的转化关系,给出了一种计算有效的隐式差分格式,并证明了这个隐式差分格式是无条件稳定、无条件收敛的,最后用数值例子说明差分格式是有效的。 展开更多
关键词 分数阶反应-扩散方程 caputo导数 差分格式 稳定性 收敛性
下载PDF
右侧Caputo分数阶导数的L2-1插值逼近 被引量:4
14
作者 杜瑞连 梁宗旗 《集美大学学报(自然科学版)》 CAS 2017年第4期68-74,共7页
对右侧α(0<α<1)阶Caputo分数阶导数在t=t_k处进行了差分离散,分别在区间[t_(j-1),t_j](j∈[k+1,N-1])上用L2插值,在区间[t_(N-1),t_N]上用L1插值,构造了L2-1差分格式,给出了相关的系数性质,并证明了其收敛阶为O(Δt^(3-α))。
关键词 右侧caputo导数 L1插值 L2插值 收敛阶
下载PDF
具有Caputo导数的分数阶退化脉冲微分系统的有限时间稳定性 被引量:1
15
作者 吴桐 张志信 蒋威 《应用数学》 CSCD 北大核心 2020年第1期202-208,共7页
本文通过构建新的Lyapunov泛函,并利用Caputo导数的相关性质以及广义的Gronwall不等式研究了同时带有扰动和脉冲因素的分数阶退化线性系统在Caputo导数意义下的有限时间稳定性问题.在此基础上给出了在没有扰动的情形下分数阶退化脉冲微... 本文通过构建新的Lyapunov泛函,并利用Caputo导数的相关性质以及广义的Gronwall不等式研究了同时带有扰动和脉冲因素的分数阶退化线性系统在Caputo导数意义下的有限时间稳定性问题.在此基础上给出了在没有扰动的情形下分数阶退化脉冲微分系统的有限时间稳定性的判据,所获得的结果推广了相关文献的结论.最后针对不同的情况给出具体数值例子验证了定理条件的有效性. 展开更多
关键词 分数阶 caputo导数 退化 脉冲 有限时间稳定性
下载PDF
α阶右侧Caputo分数阶导数的高阶插值逼近 被引量:1
16
作者 闫羽媛 梁宗旗 《集美大学学报(自然科学版)》 CAS 2021年第4期365-373,共9页
对α阶(1<α<2)右侧Caputo分数阶导数引入新变量以降低函数阶数,采用L2-1插值方法,得到了高阶插值格式。为了进一步改善L2-1方法在区间[t N-1,b]上由L1插值带来的非一致O(Δt 4-α)阶精度,增加约束条件,使整体区间均利用L2插值得... 对α阶(1<α<2)右侧Caputo分数阶导数引入新变量以降低函数阶数,采用L2-1插值方法,得到了高阶插值格式。为了进一步改善L2-1方法在区间[t N-1,b]上由L1插值带来的非一致O(Δt 4-α)阶精度,增加约束条件,使整体区间均利用L2插值得到一致的O(Δt 4-α)精度的高阶插值格式,并分别证明了二者的截断误差。 展开更多
关键词 caputo分数阶导数 L2-1插值 L 2插值 收敛阶
下载PDF
变阶分数阶广义Birkhoff系统的绝热不变量 被引量:1
17
作者 谢汉星 宋传静 +2 位作者 张佳凝 吴雪琰 沈晶蓉 《苏州科技大学学报(自然科学版)》 CAS 2019年第4期17-22,35,共7页
基于Caputo变阶分数阶导数研究广义Birkhoff系统对称性的摄动与绝热不变量。作为特例,同时也讨论了变阶分数阶Birkhoff系统、分数阶广义Birkhoff系统及整数阶广义Birkhoff系统的绝热不变量。最后,举例说明结果的应用。
关键词 广义BIRKHofF系统 对称性的摄动 绝热不变量 caputo变阶分数阶导数
下载PDF
Caputo分数阶延迟微分系统的渐近稳定性
18
作者 潘新元 《惠州学院学报》 2011年第6期16-20,共5页
本文给出了Caputo分数阶线性延迟微分系统真解渐近稳定的充分条件,并进行了严格证明。
关键词 caputo分数阶层数 分数阶线性延迟微分方程 渐近稳定性 数值方法
下载PDF
求解Caputo分数阶常微分方程的一个高阶数值方法 被引量:1
19
作者 张旭梅 曹俊英 《贵州科学》 2020年第6期88-91,共4页
研究Caputo分数阶常微分方程。利用高阶有限差分法进行时间上的离散,构造了一个3-α阶数值格式,然后进行局部截断误差分析。主要是对Caputo分数阶常微分方程分数阶导数进行离散以及对局部截断误差进行了严格的分析。
关键词 caputo分数阶常微分方程 分数阶导数的离散 局部截断误差
下载PDF
数值求解纳米尺度热传导分数阶抛物两步模型
20
作者 沈淑君 《华侨大学学报(自然科学版)》 CAS 2023年第1期133-140,共8页
提出一个纳米尺度的分数阶抛物两步模型,得到金属纳米尺度热传导的精确数值格式.该模型是通过引入Caputo-Hadamard时间分数阶导数到抛物型两步能量输运方程中,并将其温度跃变边界条件耦合得到.数值格式基于空间四阶紧格式和Caputo-Hadam... 提出一个纳米尺度的分数阶抛物两步模型,得到金属纳米尺度热传导的精确数值格式.该模型是通过引入Caputo-Hadamard时间分数阶导数到抛物型两步能量输运方程中,并将其温度跃变边界条件耦合得到.数值格式基于空间四阶紧格式和Caputo-Hadamard时间分数阶导数的L1逼近格式而建立.通过2个算例验证模型和数值方法的准确性和适用性. 展开更多
关键词 纳米尺度热传导 caputo-Hadamard分数阶导数 Robin边界条件 紧有限差分格式
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部