The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-...In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-1)(β-2α-2)φ=f.展开更多
This paper aims to investigate a new efficient method for solving time fractional partial differential equations.In this orientation,a reliable formable transform decomposition method has been designed and developed,w...This paper aims to investigate a new efficient method for solving time fractional partial differential equations.In this orientation,a reliable formable transform decomposition method has been designed and developed,which is a novel combination of the formable integral transform and the decomposition method.Basically,certain accurate solutions for time-fractional partial differential equations have been presented.Themethod under concern demandsmore simple calculations and fewer efforts compared to the existingmethods.Besides,the posed formable transformdecompositionmethod has been utilized to yield a series solution for given fractional partial differential equations.Moreover,several interesting formulas relevant to the formable integral transform are applied to fractional operators which are performed as an excellent application to the existing theory.Furthermore,the formable transform decomposition method has been employed for finding a series solution to a time-fractional Klein-Gordon equation.Over and above,some numerical simulations are also provided to ensure reliability and accuracy of the new approach.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented t...In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential Equations into nonlinear ordinary differential Equations. Afterwards, the (G'/G)-expansion method has been implemented, to celebrate the exact solutions of these Equations, in the sense of modified Riemann-Liouville derivative. As application, the exact solutions of time-space fractional Burgers’ Equation have been discussed.展开更多
An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of...An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented.Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations.And the convergence of the Euler wavelets basis is given.The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy.展开更多
In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the cor...In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the corresponding well known Fredholm integral equation of second kind. The considered in this paper has been solved already numerically in [1].展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caput...In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The results reveal that the proposed method is very effective and simple. Moreover, only a small number of shifted Legendre polynomials are needed to obtain a satisfactory result.展开更多
This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which ...This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary展开更多
In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniform...In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.展开更多
This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The gener...This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The generators contain variations of the time and generalized coordinates. Two independent non-trivial conserved quantities of the third-order ordinary differential equation are obtained. A simple example is presented to illustrate the applications of the results.展开更多
This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are ...This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.展开更多
In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a pol...In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a polynomial. The coefficients of the polynomial are then optimized using simulated annealing technique. Numerical examples with good results show the accuracy of the proposed approach compared with some existing methods.展开更多
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorou...We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.展开更多
This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional ...In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.展开更多
In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptot...In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.展开更多
In the last few decades,it has become increasingly clear that fractional calculus always plays a very significant role in various branches of applied sciences.For this reason,fractional partial differential equations(...In the last few decades,it has become increasingly clear that fractional calculus always plays a very significant role in various branches of applied sciences.For this reason,fractional partial differential equations(FPDEs)are of more importance to model the different physical processes in nature more accurately.Therefore,the analytical or numerical solutions to these problems are taken into serious consideration and several techniques or algorithms have been developed for their solution.In the current work,the idea of fractional calculus has been used,and fractional FornbergWhithamequation(FFWE)is represented in its fractional view analysis.Awell-knownmethod which is residual power series method(RPSM),is then implemented to solve FFWE.TheRPSMresults are discussed through graphs and tables which conform to the higher accuracy of the proposed technique.The solutions at different fractional orders are obtained and shown to be convergent toward an integer-order solution.Because the RPSM procedure is simple and straightforward,it can be extended to solve other FPDEs and their systems.展开更多
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
文摘In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-1)(β-2α-2)φ=f.
基金funded by the Deanship of Research in Zarqa University,Jordan。
文摘This paper aims to investigate a new efficient method for solving time fractional partial differential equations.In this orientation,a reliable formable transform decomposition method has been designed and developed,which is a novel combination of the formable integral transform and the decomposition method.Basically,certain accurate solutions for time-fractional partial differential equations have been presented.Themethod under concern demandsmore simple calculations and fewer efforts compared to the existingmethods.Besides,the posed formable transformdecompositionmethod has been utilized to yield a series solution for given fractional partial differential equations.Moreover,several interesting formulas relevant to the formable integral transform are applied to fractional operators which are performed as an excellent application to the existing theory.Furthermore,the formable transform decomposition method has been employed for finding a series solution to a time-fractional Klein-Gordon equation.Over and above,some numerical simulations are also provided to ensure reliability and accuracy of the new approach.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
文摘In this article, a new application to find the exact solutions of nonlinear partial time-space fractional differential Equation has been discussed. Firstly, the fractional complex transformation has been implemented to convert nonlinear partial fractional differential Equations into nonlinear ordinary differential Equations. Afterwards, the (G'/G)-expansion method has been implemented, to celebrate the exact solutions of these Equations, in the sense of modified Riemann-Liouville derivative. As application, the exact solutions of time-space fractional Burgers’ Equation have been discussed.
基金The authors are grateful to the editor,the associate editor and the anonymous reviewers for their constructive and helpful comments.This work was supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY18A010026),the National Natural Science Foundation of China(No.11701304,11526117)Zhejiang Provincial Natural Science Foundation of China(No.LQ16A010006)+1 种基金the Natural Science Foundation of Ningbo City,China(No.2017A610143)the Natural Science Foundation of Ningbo City,China(2018A610195).
文摘An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper.The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented.Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations.And the convergence of the Euler wavelets basis is given.The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy.
文摘In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the corresponding well known Fredholm integral equation of second kind. The considered in this paper has been solved already numerically in [1].
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
文摘In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The results reveal that the proposed method is very effective and simple. Moreover, only a small number of shifted Legendre polynomials are needed to obtain a satisfactory result.
文摘This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary
文摘In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.
基金supported by the National Natural Science Foundation of China (Grant No 10872037)the Natural Science Foundation of Anhui Province of China (Grant No 070416226)
文摘This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The generators contain variations of the time and generalized coordinates. Two independent non-trivial conserved quantities of the third-order ordinary differential equation are obtained. A simple example is presented to illustrate the applications of the results.
文摘This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.
文摘In this paper, we approach the problem of obtaining approximate solution of second-order initial value problems by converting it to an optimization problem. It is assumed that the solution can be approximated by a polynomial. The coefficients of the polynomial are then optimized using simulated annealing technique. Numerical examples with good results show the accuracy of the proposed approach compared with some existing methods.
基金supported by NSFC Project(11301446,11271145)China Postdoctoral Science Foundation Grant(2013M531789)+3 种基金Specialized Research Fund for the Doctoral Program of Higher Education(2011440711009)Program for Changjiang Scholars and Innovative Research Team in University(IRT1179)Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(2013RS4057)the Research Foundation of Hunan Provincial Education Department(13B116)
文摘We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.
文摘This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
文摘In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.
文摘In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.
基金supported by Thailand Science Research and Innovation(TSRI)Basic Research Fund:Fiscal year 2022 under Project No.FRB650048/0164.
文摘In the last few decades,it has become increasingly clear that fractional calculus always plays a very significant role in various branches of applied sciences.For this reason,fractional partial differential equations(FPDEs)are of more importance to model the different physical processes in nature more accurately.Therefore,the analytical or numerical solutions to these problems are taken into serious consideration and several techniques or algorithms have been developed for their solution.In the current work,the idea of fractional calculus has been used,and fractional FornbergWhithamequation(FFWE)is represented in its fractional view analysis.Awell-knownmethod which is residual power series method(RPSM),is then implemented to solve FFWE.TheRPSMresults are discussed through graphs and tables which conform to the higher accuracy of the proposed technique.The solutions at different fractional orders are obtained and shown to be convergent toward an integer-order solution.Because the RPSM procedure is simple and straightforward,it can be extended to solve other FPDEs and their systems.