How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interio...How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.展开更多
As people grow older, their cognitive functions undergo changes which may result in uncomfortable driving situations and even increase the risk of accidents. This research aims to understand the neuropsychological asp...As people grow older, their cognitive functions undergo changes which may result in uncomfortable driving situations and even increase the risk of accidents. This research aims to understand the neuropsychological aspects of healthy aging and their possible relationship <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> changes in motor performance or ability. The research methodology is descriptive and includes a collection of basic studies in the scope of neuroscience, driving tasks, and older driver behavior. The final analysis points to certain changes in the functioning of the cerebral cortex and its connections as being responsible for poor performance in some basic driving tasks, but which can be compensated for by means of adapted mechanisms in motor vehicles. This study may contribute as a methodological tool, to the automobile design process, for the selection of Advanced Driver Assistance Systems (ADAS) or other emerging technologies which can compensate cognitive changes, improve safety, comfort and inclusion of older drivers in the future of automobile interior design. We conclude that in normal aging, people may present some cognitive deficits especially linked to the frontal and parietal lobe, which interfere with the necessary driving skills albeit not with the dangerous ones and can be compensated by technological solutions. The main innovation of this article is related to the bibliographical compilation and critical analysis in terms of identifying the neuropsychological aspects of normal human aging and car driving and its relationship with possible contributions from vehicular technology, as well its consider future trends in automotive interior design that should be analysed with caution in order to users inclusion.</span></span></span>展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51175214)Scientific and Technological Planning Project of China (Grant No. 2011BAG03B01-1)Based Research Operation Expenses Project of Jilin University, China (Grant No. 421032572415)
文摘How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.
文摘As people grow older, their cognitive functions undergo changes which may result in uncomfortable driving situations and even increase the risk of accidents. This research aims to understand the neuropsychological aspects of healthy aging and their possible relationship <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> changes in motor performance or ability. The research methodology is descriptive and includes a collection of basic studies in the scope of neuroscience, driving tasks, and older driver behavior. The final analysis points to certain changes in the functioning of the cerebral cortex and its connections as being responsible for poor performance in some basic driving tasks, but which can be compensated for by means of adapted mechanisms in motor vehicles. This study may contribute as a methodological tool, to the automobile design process, for the selection of Advanced Driver Assistance Systems (ADAS) or other emerging technologies which can compensate cognitive changes, improve safety, comfort and inclusion of older drivers in the future of automobile interior design. We conclude that in normal aging, people may present some cognitive deficits especially linked to the frontal and parietal lobe, which interfere with the necessary driving skills albeit not with the dangerous ones and can be compensated by technological solutions. The main innovation of this article is related to the bibliographical compilation and critical analysis in terms of identifying the neuropsychological aspects of normal human aging and car driving and its relationship with possible contributions from vehicular technology, as well its consider future trends in automotive interior design that should be analysed with caution in order to users inclusion.</span></span></span>