Background: The emergence of carbapenemase producing Acinetobacter baumannii is increasingly reported nowadays and constitutes a major problem to the intensive care unit (ICU) patients with notable extensive-drug resi...Background: The emergence of carbapenemase producing Acinetobacter baumannii is increasingly reported nowadays and constitutes a major problem to the intensive care unit (ICU) patients with notable extensive-drug resistance ability. The study investigates carbapenemase producing A. baumannii strains exhibiting an extensively drug-resistant (XDR) phenotype, isolated from ICU patients in Khartoum. Methods: A total of 100 nonduplicate Gram-negative coccobacilli strains were obtained from microbiology laboratory of ICU patients’ clinical isolates. Molecular identification of A. baumannii was performed by targeting 16S rRNA gene using specifically designed primers. Then, XDR strains were determined by susceptibility testing (disc diffusion). For detection of carbapenemase genes Polymerase chain reaction (PCR) was carried out. Result: Of 100 ICU clinical isolates, 38 (38.0%) was confirmed A. baumannii strains, those strains showed 100% carbapenem resistance and 60.5% extensive drug resistance to the antibiotics tested. The frequency of carbapenemase producer was 57.9% (22/38) of carbapenem resistance A. baumannii (CRAB). The most common carbapenemase associated with resistance was blaOXA gene followed by blaNDM and blaGES A. baumannii isolates. The co-occurrence of blaOXA-48-like and blaNDM, blaOXA-23-like and blaOXA-51, and blaNDM-1 and blaOXA-51 was detected in 22.7%, 18.2% strains and 4.5% respectively. A unique characteristic of our findings was the coharbouring of the genes blaNDM-1, blaOXA-23-like, blaOXA-51 and blaOXA-143 in 9.1% strains (2/22), and this was the first report in the Khartoum city, Sudan. Conclusion: We have demonstrated for the first time a high prevalence of XDR-carbapenemase producing A. baumannii clinical isolates from ICU patients in Khartoum. Also an emergent blaOXA-143 was reported as High-Risk Clones. This highlights the routine mentoring of XDR-carbapenemase producing A. baumannii to avoid clone dissemination in our region hospitals.展开更多
文摘Background: The emergence of carbapenemase producing Acinetobacter baumannii is increasingly reported nowadays and constitutes a major problem to the intensive care unit (ICU) patients with notable extensive-drug resistance ability. The study investigates carbapenemase producing A. baumannii strains exhibiting an extensively drug-resistant (XDR) phenotype, isolated from ICU patients in Khartoum. Methods: A total of 100 nonduplicate Gram-negative coccobacilli strains were obtained from microbiology laboratory of ICU patients’ clinical isolates. Molecular identification of A. baumannii was performed by targeting 16S rRNA gene using specifically designed primers. Then, XDR strains were determined by susceptibility testing (disc diffusion). For detection of carbapenemase genes Polymerase chain reaction (PCR) was carried out. Result: Of 100 ICU clinical isolates, 38 (38.0%) was confirmed A. baumannii strains, those strains showed 100% carbapenem resistance and 60.5% extensive drug resistance to the antibiotics tested. The frequency of carbapenemase producer was 57.9% (22/38) of carbapenem resistance A. baumannii (CRAB). The most common carbapenemase associated with resistance was blaOXA gene followed by blaNDM and blaGES A. baumannii isolates. The co-occurrence of blaOXA-48-like and blaNDM, blaOXA-23-like and blaOXA-51, and blaNDM-1 and blaOXA-51 was detected in 22.7%, 18.2% strains and 4.5% respectively. A unique characteristic of our findings was the coharbouring of the genes blaNDM-1, blaOXA-23-like, blaOXA-51 and blaOXA-143 in 9.1% strains (2/22), and this was the first report in the Khartoum city, Sudan. Conclusion: We have demonstrated for the first time a high prevalence of XDR-carbapenemase producing A. baumannii clinical isolates from ICU patients in Khartoum. Also an emergent blaOXA-143 was reported as High-Risk Clones. This highlights the routine mentoring of XDR-carbapenemase producing A. baumannii to avoid clone dissemination in our region hospitals.