期刊文献+
共找到1,415篇文章
< 1 2 71 >
每页显示 20 50 100
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
1
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/CFs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Square concrete columns strengthened with carbon fiber reinforced plastics sheets at low temperatures 被引量:1
2
作者 马芹永 卢小雨 《Journal of Central South University》 SCIE EI CAS 2009年第5期835-840,共6页
Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceabilit... Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceability of damaged concrete columns at low temperatures. The failure of the specimens,in most cases,takes place within the middle half of the columns. And the failure of strengthened columns is sudden and explosive. The CFRP sheets increase both the axial load capacity and the ultimate concrete compressive strain of the columns. The ultimate loads of strengthened columns at-10,0 and 10 ℃ increase averagely by 9.09%,6.63% and 17.83%,respectively,as compared with those of the control specimens. The axial compressive strength of strengthened columns is related to the curing temperatures. The improvement of axial compressive strength decreases with reducing temperature,and when the temperature drops to a certain value,the improvement increases with falling temperature. 展开更多
关键词 混凝土柱 碳纤维加固 低温 塑料板 方形 固化温度 抗压强度 碳纤维增强
下载PDF
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
3
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
下载PDF
Tribological Behavior of Diamond Coatings against Carbon Fiber Reinforced Plastics under Dry Conditions
4
作者 Jianguo Zhang 《Journal of Surface Engineered Materials and Advanced Technology》 2019年第4期45-54,共10页
The frictional resistance and machining quality when cutting carbon fiber reinforced plastics (CFRP) laminates are associated with tribological behavior of tool materials. In the present study, the tribological proper... The frictional resistance and machining quality when cutting carbon fiber reinforced plastics (CFRP) laminates are associated with tribological behavior of tool materials. In the present study, the tribological properties of three types of monolayer microcrystalline diamond (MCD) coatings, nanocrystalline diamond (NCD) coatings and dual-layer MCD/NCD coatings sliding against CFRP are investigated under dry lubricated conditions using the rotational friction tester. The coefficients of friction (COF), wear rate and worn surfaces of the contacted surfaces are analyzed for the MCD-CFRP, NCD-CFRP and MCD/NCD-CFRP contacting pairs. The results show that compared with the monolayer MCD and NCD, the bilayer of MCD/NCD coating displays the lowest COF with the value of ~0.13, it is 42% and 55% of the values for MCD and NCD coatings. Due to the rough surfaces of MCD, the wear debris of CFRP on MCD samples exhibits the plowing effect. While for the NCD and MCD/NCD samples, the wear fragments display the planar shapes. The wear rate of CFRP against MCD is more than twice that of CFRP against NCD, due to the excellent loading capacity. While the wear rate of CFRP against MCD/NCD is about twice than that of CFRP-NCD pairs. The bilayer of MCD/NCD combines the excellent advantages of high hardness of MCD and the smooth surface of NCD. It shows the broad application potential for the bilayer coatings. 展开更多
关键词 TRIBOLOGICAL Behavior DIAMOND COATINGS BILAYER COATINGS carbon fiber reinforced plastics
下载PDF
Entrance and Exit Defects During Coarse Pitch Orbital Drilling of Carbon Fiber Reinforced Plastic Plates 被引量:2
5
作者 Shan Yicai He Ning +1 位作者 Li Liang Zhang Ting 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第6期-,共10页
Formation of entrance and exit defects in coarse pitch orbital drilling(CPOD)of carbon fiber reinforced plastic(CFRP)plates was investigated.Deep observation on entrance and exit morphology shows tear and burr are typ... Formation of entrance and exit defects in coarse pitch orbital drilling(CPOD)of carbon fiber reinforced plastic(CFRP)plates was investigated.Deep observation on entrance and exit morphology shows tear and burr are typical defects.Meanwhile,tear is more obvious than burr,and more entrance tears emerge than exit tears.As one of the major causes of entrance and exit defects in CPOD,cutting forces were substaintially studied by contrast experiments.Then,the effect of cutting parameters on entrance and exit tear was qualitatively analyzed through a single factor test.Experiment results indicate that the variation of rotation speed has little influence on entrance and exit tear.Increasing tangential feed per tooth can enlarge entrance tear,but bring little effect on exit tear.By increasing axial feed pitch,the hole entrance and exit show severe tear.When revolution radius grows bigger and bigger,entrance and exit tear firstly decreases,and then increases.Finally,the models of tear and delamination during CPOD of CFRP were established,the formation mechanisms of entrance and exit defects were revealed,and the control strategies were accordingly put forward. 展开更多
关键词 carbon fiber reinforced plastics(CFRP) coarse pitch orbital drilling(CPOD) entrance and exit defects formation mechanism
下载PDF
Feasibility study of wave-motion milling of carbon fiber reinforced plastic holes 被引量:4
6
作者 Deyuan Zhang Zhenyu Shao +4 位作者 Daxi Geng Xinggang Jiang Yihang Liu ZehuaZhou Shaomin Li 《International Journal of Extreme Manufacturing》 EI 2021年第1期86-96,共11页
Carbon fiber reinforced plastic(CFRP)has been applied in aeronautics,aerospace,automotive and medical industries due to its superior mechanical properties.However,due to its difficult-to-cut characteristic,various dam... Carbon fiber reinforced plastic(CFRP)has been applied in aeronautics,aerospace,automotive and medical industries due to its superior mechanical properties.However,due to its difficult-to-cut characteristic,various damages in twist drilling and chip removal clog in core drilling could happen,inevitably reducing hole quality and hole-manufacturing efficiency.This paper proposes the wave-motion milling(WMM)method for CFRP hole-manufacturing to improve hole quality.This paper presents a motion path model based on the kinematics of the WMM method.The wave-motion cutting mode in WMM was analyzed first.Then,comparison experiments on WMM and conventional helical milling(CHM)of CFRP were carried out under dry conditions.The results showed that the hole surface quality of the CFRP significantly improved with a decrease of 18.1%–36%of Ra value in WMM compared to CHM.WMM exerted a significantly weaker thrust force than that of CHM with a reduction of 12.0%–24.9%and 3%–7.7%for different axial feed per tooth and tangential feed per tooth,respectively.Meanwhile,the hole exit damages significantly decreased in WMM.The average tear length at the hole exit in WMM was reduced by 3.5%–29.5%and 35.5%–44.7%at different axial feed per tooth and tangential feed per tooth,respectively.Moreover,WMM significantly alleviated tool wear.The experimental results suggest that WMM is an effective and promising strategy for CFRP hole-manufacturing. 展开更多
关键词 carbon fiber reinforced plastic wave-motion milling cutting force surface integrity
下载PDF
Microstructure of Carbon Fiber and Carbon Reinforced Plastic 被引量:1
7
作者 N. I. Baurova Wei Hao Ouyang Xiao 《Journal of Materials Science and Chemical Engineering》 2013年第5期28-32,共5页
This study is the investigation of the microstructure of different types of carbon fiber. They were compared with the carbonized and graphitized fibers. Results of structural researches have been presented. It was fou... This study is the investigation of the microstructure of different types of carbon fiber. They were compared with the carbonized and graphitized fibers. Results of structural researches have been presented. It was found that the damage varies from different pollution and the damage of the monofibers. The effect of the pollution of the monofiber was determined. 展开更多
关键词 COLD CURING EPOXY Matrix carbon fiber carbon reinforced Plastic MICROSTRUCTURE
下载PDF
Toughness and Fracture Mechanism of Carbon Fiber Reinforced Epoxy Composites
8
作者 李媛媛 嵇宇 +5 位作者 谷志旗 李秋雅 何鸿喆 张岩 王萍 眭建华 《Journal of Donghua University(English Edition)》 CAS 2022年第3期193-205,共13页
The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosil... The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosilica were used to modify epoxy resin.Effect of modified resin and unmodified resin on fracture toughness of CFRP was compared and discussed.Lay-up angles and thicknesses effects on fracture toughness of composites were also investigated.The fracture toughness of CFRP was obtained through double cantilever beam(DCB)and end notched flexure(ENF)tests.The results showed that the composites prepared by modified resin exhibited high fracture toughness compared with unmodified composites.The fracture toughness value of mode I increased from 1.83 kJ/m2 to 4.55 kJ/m2.The fracture toughness value of mode II increased from 2.30 kJ/m2 to 6.47 kJ/m2. 展开更多
关键词 fracture toughness carbon fiber reinforced epoxy composite(CFRP) mixed modification laying angle
下载PDF
Parameters of static response of carbon fiber reinforced polymer(CFRP) suspension cables
9
作者 王立彬 吴勇 Mohammad Noori 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3123-3132,共10页
The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co... The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically. 展开更多
关键词 碳纤维增强复合材料 静态响应 电缆 碳纤维复合材料 位移增量 非对称载荷 平衡方程 悬挂
下载PDF
Numerical Determination of Shear Strength of Steel Reinforced Concrete Column Strengthened by CFRP Sheets 被引量:1
10
作者 王铁成 余流 王立军 《Transactions of Tianjin University》 EI CAS 2003年第1期58-62,共5页
The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dea... The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid. 展开更多
关键词 钢筋混凝土柱 碳纤维增强塑料板 玻璃钢板 剪切强度 数值计算 地震激励
下载PDF
Effects of fiber orientation on tool wear evolution and wear mechanism when cutting carbon fiber reinforced plastics 被引量:1
11
作者 Weizhou WU Shipeng LI +5 位作者 Xuda QIN Wentao LIU Xin CUI Hao LI Mengrui SHI Haibao LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期549-565,共17页
The aim of the present paper is to reveal the influence of different fiber orientations on the tool wear evolution and wear mechanism. Side-milling experiments with large-diameter milling tools are conducted. A finite... The aim of the present paper is to reveal the influence of different fiber orientations on the tool wear evolution and wear mechanism. Side-milling experiments with large-diameter milling tools are conducted. A finite element(FE) cutting model of carbon fiber reinforced plastics(CFRP)is established to get insight into the cutting stress status at different wear stages. The results show that different fiber orientations bring about distinct differences in the extent, profile and mechanism of tool wear. Severer wear occurs when cutting 45° and 90° plies, followed by 0°, correspondingly,the least wear is obtained when θ = 135°(θ represents the orientation of fibers). Moreover, the worn profiles of cutting tools when θ = 0° and 45° are waterfall edge, while round edge occurs whenθ = 135° and a combined shape of waterfall and round edge is obtained when θ = 90°. The wear mechanisms under different fiber orientations are strongly dependent on the cutting stress distributions. The evolution of tool wear profile is basically consistent with the stress distribution on the tool surface at different wear stages, and the extent of tool wear is determined by the magnitude of stress on the tool surface. Besides, the worn edges produce an actual negative clearance angle,which decreases the actual cutting thickness and leads to compressing and bending failure of fibers beneath the cutting region as well as low surface qualities. 展开更多
关键词 carbon fiber reinforced plastics(CFRP) fiber orientation Finite element method(FEM) Tool wear Wear mechanism
原文传递
Effect of Fibre Packing on Random Variability of Compressive Strength of Unidirectional Carbon Fibre Reinforced Plastic
12
作者 徐东 黄金娥 +1 位作者 章力 张书锋 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期62-66,共5页
Compression tests on twenty unidirectional(UD) carbon fibre reinforced plastic(CFRP) specimens are conducted, the statistics on the measured compressive strength is calculated, and the fracture surface is characterize... Compression tests on twenty unidirectional(UD) carbon fibre reinforced plastic(CFRP) specimens are conducted, the statistics on the measured compressive strength is calculated, and the fracture surface is characterized. Two types of different fracture surface are experimentally observed, and they are corresponding to very different values on the compressive strength. A finite element(FE) analysis is conducted to investigate the influence of random fibre packing on the compressive strength. And a riks method(provided in ABAQUS software) is applied in FE model to analyze fibre buckling behaviour in the vicinity of compressive failure. The FE analysis agrees well with the experimental observation on the two types of buckling modes and also the partition of compressive strength. It is clearly shown that the random fibre packing lays a significant influence on the random variability of compressive strength of CFRP. 展开更多
关键词 carbon FIBRE reinforced plastic(CFRP) COMPRESSIVE strength random variability FIBRE BUCKLING finite element(FE) reliability
下载PDF
Shear capacity of reinforced concrete columns strengthened with CFRP sheet
13
作者 谢剑 刘雪梅 赵彤 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期853-858,共6页
This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced w... This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet. 展开更多
关键词 增强型混凝土 碳纤维增强水泥 CFRP 剪切能力 应力分析
下载PDF
弯-剪-扭复合受力CFRP布加固RC梁抗扭性能细观数值分析
14
作者 李冬 贺益帅 +2 位作者 张江兴 金浏 杜修力 《北京工业大学学报》 CAS CSCD 北大核心 2024年第8期958-973,共16页
为了研究弯-剪-扭复合受力条件下碳纤维增强复合材料(carbon fiber reinforced polymer, CFRP)布加固钢筋混凝土(reinforced concrete, RC)梁的抗扭性能,建立体现混凝土材料非均质性、钢筋-混凝土黏结滑移关系和CFRP布-混凝土相互作用... 为了研究弯-剪-扭复合受力条件下碳纤维增强复合材料(carbon fiber reinforced polymer, CFRP)布加固钢筋混凝土(reinforced concrete, RC)梁的抗扭性能,建立体现混凝土材料非均质性、钢筋-混凝土黏结滑移关系和CFRP布-混凝土相互作用关系的细观数值分析模型。由于缺乏CFRP布加固RC梁在弯-剪-扭复合受力作用下失效破坏的典型物理试验,采用复合对比验证法对数值模型的合理性进行验证,即分别与单独受剪、单独受扭以及受弯-扭复合作用下RC梁和CFRP布加固RC梁的试验结果进行对比验证。进而,基于建立的细观数值分析模型探究了配纤率和扭弯比对CFRP布加固RC梁在弯-剪-扭复合受力作用下抗扭力学性能的影响。结果表明:1)采用CFRP布加固能够显著提高RC梁的峰值扭矩;2)随配纤率增加,RC梁损伤分布范围逐渐变大,CFRP布应变逐渐减小,梁整体峰值扭矩增大,但其增大幅度减小;3)随扭弯比增加,RC梁裂缝分布愈加集中,裂缝与水平方向夹角逐渐减小,梁整体峰值扭矩增大,CFRP布应变减小。建立的考虑弯-剪-扭复合受力作用的数值模拟方法可为后续研究复杂应力状态下CFRP布加固RC梁尺寸效应行为等奠定基础。 展开更多
关键词 CFRP布加固RC梁 剪切 纯扭 弯扭 弯-剪-扭 细观数值模拟方法
下载PDF
CFRP板纵向加固RC柱在水平低周循环荷载下的力学性能研究与应用
15
作者 强旭红 陈岩松 +1 位作者 姜旭 谭成 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期148-163,共16页
开发了一种纵向粘贴CFRP(Carbon Fiber Reinforced Polymer,碳纤维增强复合材料)板的RC(Reinforced Concrete,钢筋混凝土)柱抗弯加固系统,该加固系统由纵向粘贴在柱表面的预制CFRP板和防止柱底CFRP板脱粘的混凝土加厚层组成.为研究纵向... 开发了一种纵向粘贴CFRP(Carbon Fiber Reinforced Polymer,碳纤维增强复合材料)板的RC(Reinforced Concrete,钢筋混凝土)柱抗弯加固系统,该加固系统由纵向粘贴在柱表面的预制CFRP板和防止柱底CFRP板脱粘的混凝土加厚层组成.为研究纵向粘贴CFRP板对RC柱的抗弯性能影响,设计并开展了5根足尺矩形RC柱的水平低周循环加载试验.研究结果表明:粘贴CFRP板加固能有效延缓柱的开裂;柱的破坏模式得到明显改善;相较于未加固柱子,粘贴1层CFRP板和2层CFRP板加固的RC柱极限承载力分别提高了15.1%和17.4%;加固后柱的抗弯承载力和刚度得到提高,但增加CFRP板的层数对极限强度和刚度没有显著影响,反而会降低柱的延性,相较于仅采用增大柱底截面的方式加固的对照柱,粘贴1层CFRP板和2层CFRP板加固的试验柱的延性系数分别降低16.2%和35.1%;试验过程中,由于柱与基础节点承载力的限制,CFRP的最大应变仅达到极限应变的24%,抗拉强度未得到充分发挥.该加固方法已在某医院加固工程中得到应用,跟踪研究表明,加固后柱子的抗弯承载力有明显提升,加固方法得到工程业界的认可. 展开更多
关键词 钢筋混凝土柱 抗弯加固 水平低周循环加载 碳纤维增强复合材料板 纵向粘贴
下载PDF
碳纤维层合板胶接接头在湿热环境下的性能演变
16
作者 余海燕 章代昕 楚遵康 《中国机械工程》 EI CAS CSCD 北大核心 2024年第5期895-903,共9页
为了研究碳纤维复合材料(CFRP)胶接接头对汽车涂装过程中的高温高湿环境的适应性,对单搭接CFRP胶接接头进行了烘烤和加速吸湿实验,对经历不同湿热环境的胶接接头进行了剪切拉伸和正向拉伸试验,对连接强度改变及接头的失效模式演变进行... 为了研究碳纤维复合材料(CFRP)胶接接头对汽车涂装过程中的高温高湿环境的适应性,对单搭接CFRP胶接接头进行了烘烤和加速吸湿实验,对经历不同湿热环境的胶接接头进行了剪切拉伸和正向拉伸试验,对连接强度改变及接头的失效模式演变进行了讨论,对环氧树脂与聚氨酯两种胶粘剂连接的接头对烘烤的适应性进行了比较,并研究了在搭接区域边缘增加胶瘤对提高连接强度的效果。研究结果表明:单搭接CFRP胶接接头的剪切拉伸强度远高于正向拉伸强度。烘烤处理后CFRP层合板及CFRP胶接接头的强度不但没有下降,反而有所提高。DP420环氧树脂胶比DP6330聚氨酯胶具有更好的耐烘烤性。吸湿后,CFRP胶接接头的强度、刚度以及最大断裂位移出现了减小。接头的失效模式从胶层内聚失效逐渐演变为与CFRP层合板的层间失效。在搭接区域边缘增加胶瘤能有效提高CFRP胶接接头的剪切拉伸强度。 展开更多
关键词 碳纤维复合材料 胶接接头 烘烤 湿热 连接强度
下载PDF
CFRP及EWSS复合加固震损双层高架桥框架式桥墩恢复力模型研究
17
作者 许成祥 吴永昂 +1 位作者 胡序辉 肖良丽 《工程力学》 EI CSCD 北大核心 2024年第5期55-67,共13页
为研究碳纤维布(Carbon Fiber Reinforced Polymer,CFRP)及外包型钢(Externally Wrapped Steel Section,EWSS)复合加固震损双层高架桥框架式桥墩的恢复力模型,对1榀原型对比试件、1榀无预损加固试件和2榀遭受不同地震损伤加固试件进行... 为研究碳纤维布(Carbon Fiber Reinforced Polymer,CFRP)及外包型钢(Externally Wrapped Steel Section,EWSS)复合加固震损双层高架桥框架式桥墩的恢复力模型,对1榀原型对比试件、1榀无预损加固试件和2榀遭受不同地震损伤加固试件进行了低周往复加载破坏试验,获取了滞回曲线并提取骨架曲线,分析其滞回特性,提出一种弹性段和强化段为双折线、下降段为指数函数且考虑初始损伤的骨架曲线模型;采用试验数据回归拟合方法,定量描述了试件滞回曲线卸载刚度的退化规律,考虑了同级加载承载力退化和定点指向特征,建立了恢复力模型。研究结果表明:复合加固试件滞回曲线捏缩现象明显,呈倒S型,各滞回环分别相交于骨架曲线上正向、负向荷载为屈服荷载0.25倍的点,峰值荷载后EWSS产生包辛格效应;所提出的骨架曲线模型对中度震损和重度震损加固试件下降段指数函数的参数k建议取值分别为3.6和3.4;所建立的骨架曲线模型和恢复力模型计算结果与试验实测结果吻合较好,可为该类结构弹塑性地震反应分析提供依据。 展开更多
关键词 双层框架式桥墩 地震损伤 碳纤维布及外包型钢复合加固 滞回特性 恢复力模型
下载PDF
侧向冲击荷载作用下CFRP型材-方钢管混凝土柱的动力响应
18
作者 李帼昌 李晓 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期50-56,共7页
为了研究CFRP型材-方钢管混凝土固简柱的抗侧向冲击性能,采用水平撞击装置对3个CFRP型材-方钢管混凝土柱进行侧向冲击试验.根据柱的破坏模式、局部变形、整体变形及冲击力分析柱的动力响应,研究了CFRP型材、边界条件、冲击能量与冲击冲... 为了研究CFRP型材-方钢管混凝土固简柱的抗侧向冲击性能,采用水平撞击装置对3个CFRP型材-方钢管混凝土柱进行侧向冲击试验.根据柱的破坏模式、局部变形、整体变形及冲击力分析柱的动力响应,研究了CFRP型材、边界条件、冲击能量与冲击冲量对试件动力响应的影响规律.结果表明,CFRP型材-方钢管混凝土固简柱呈现弯曲破坏,具有良好的抗冲击性能,且随着支座约束能力的增大,抗侧向冲击性能增大.增加单位冲击冲量可使悬臂试件的峰值位移下降7%,而两端固支试件峰值位移仅变化1%.随着支座约束能力的下降,冲击冲量对试件变形的影响程度增大.在钢管混凝土固简试件中内置CFRP型材可使冲击位置处峰值位移下降9%,且降低程度随着支座约束能力的下降而增加. 展开更多
关键词 钢管混凝土 CFRP 侧向冲击 动力响应
下载PDF
超声振动辅助磨削CFRP复合材料薄管撕裂损伤研究
19
作者 康仁科 陆冰伟 +4 位作者 陈凯良 李晟超 戴晶滨 董志刚 鲍岩 《中国机械工程》 EI CAS CSCD 北大核心 2024年第3期524-533,540,共11页
针对碳纤维增强复合材料(CFRP)薄管超声振动辅助磨削过程中存在撕裂损伤且形成原因不明确的问题,通过对M55J和T300复合材料薄管开展超声振动辅助磨削试验,探究了超声振幅、进给量及主轴转速对磨削力和撕裂尺寸的影响规律,通过对磨削过... 针对碳纤维增强复合材料(CFRP)薄管超声振动辅助磨削过程中存在撕裂损伤且形成原因不明确的问题,通过对M55J和T300复合材料薄管开展超声振动辅助磨削试验,探究了超声振幅、进给量及主轴转速对磨削力和撕裂尺寸的影响规律,通过对磨削过程的受力分析和对最大未变形切屑厚度的计算,分析了撕裂位置的形成原因和撕裂尺寸的变化规律。结果表明:磨削力随超声振幅的增大而减小,随进给量的增大而增大,与主轴转速的关联性较小;撕裂易出现于CFRP薄管内壁,其长度与高度随超声振幅的增大而减小,随进给量的增大而增大,随主轴转速的增大而减小。 展开更多
关键词 碳纤维增强复合材料 薄管 超声振动辅助磨削 磨削力 撕裂
下载PDF
基于NSGA-Ⅱ的复合材料防撞梁碰撞损伤多目标优化
20
作者 朱孙科 陈历 +2 位作者 倪颖倩 肖勇 宋霞 《塑性工程学报》 CAS CSCD 北大核心 2024年第2期173-181,共9页
为在设计时考虑低速碰撞损伤对碳纤维复合材料(CFRP)防撞梁力学性能的影响,发展了改进Hashin失效准则的VUSDFLD子程序来判定低速碰撞时CFRP防撞梁7个方向的损伤程度,采用壳单元模拟了复合材料的力学性能,建立了CFRP防撞梁低速碰撞有限... 为在设计时考虑低速碰撞损伤对碳纤维复合材料(CFRP)防撞梁力学性能的影响,发展了改进Hashin失效准则的VUSDFLD子程序来判定低速碰撞时CFRP防撞梁7个方向的损伤程度,采用壳单元模拟了复合材料的力学性能,建立了CFRP防撞梁低速碰撞有限元显式动力学模型。采用该方法对相同实验条件下的复合材料层合板低速冲击剩余强度进行了计算,并将计算结果与实验结果进行了对比,仿真结果与实验结果吻合较好。在此基础上,以复合材料防撞梁铺层厚度和铺层角度为设计变量,将复合材料防撞梁的质量和低速冲击时产生的损伤单元数作为优化目标,建立了CFRP防撞梁低速碰撞损伤动力学多目标优化模型,采用基于Pareto策略改进的NSGA-Ⅱ非支配排序遗传算法对其进行多目标优化求解。优化后,CFRP防撞梁质量由1.02 kg降为0.76 kg,减重率为25%;损伤单元数由30238个降为23206个,损伤降低率为23%。结果表明,所发展基于Hashin失效准则的VUSDFLD子程序和对CFRP防撞梁低速碰撞损伤多目标优化是行之有效的,为复合材料防撞梁结构的优化设计提供了参考。 展开更多
关键词 碳纤维复合材料 显式动力学 NSGA-Ⅱ算法 Hashin失效准则 多目标优化
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部