期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
A review of in situ carbon mineralization in basalt 被引量:2
1
作者 Xiaomin Cao Qi Li +1 位作者 Liang Xu Yongsheng Tan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1467-1485,共19页
Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable opt... Global warming has greatly threatened the human living environment and carbon capture and storage(CCS)technology is recognized as a promising way to reduce carbon emissions.Mineral storage is considered a reliable option for long-term carbon storage.Basalt rich in alkaline earth elements facilitates rapid and permanent CO_(2) fixation as carbonates.However,the complex CO_(2)-fluid-basalt interaction poses challenges for assessing carbon storage potential.Under different reaction conditions,the carbonation products and carbonation rates vary.Carbon mineralization reactions also induce petrophysical and mechanical responses,which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs.In this paper,recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed.The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors.Changes in pore structure,permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed.This study could provide insight into challenges as well as perspectives for future research. 展开更多
关键词 carbon mineralization BASALT CO_(2)-fluid-basalt interaction Petrophysical evolution Mechanical response carbon capture and storage(CCS)
下载PDF
Effects of Nitrogen Treatments on Organic Carbon Mineralization of Citrus Orchard Soil 被引量:2
2
作者 翁伯琦 王峰 +4 位作者 王义祥 江福英 吴志丹 尤志明 张文锦 《Agricultural Science & Technology》 CAS 2012年第8期1702-1707,共6页
[Objective] This study aimed to investigate the effect of soil organic carbon mineralization at different temperature on the amount of nitrogen application, in order to provide references for the establishment of carb... [Objective] This study aimed to investigate the effect of soil organic carbon mineralization at different temperature on the amount of nitrogen application, in order to provide references for the establishment of carbon circulation model for orchard eco-system. [Method] The effects of nitrogen treatments on soil organic carbon mineralization of citrus orchard soil were investigated under 10, 20, 30 ℃ by laboratory simulated experiment. [Result] The mineralization rate decreased quickly at the be- ginning of the experiment but remained stable at the late period under three temper- ature treatments. The amounts of CO2 ranged from 1 328.25-2 219.42 mg/kg under three temperature condition, and the amount of soil organic carbon mineralization of 100 mg/kg (N4) treatment was the greatest, while that of CK was the lowest. High level nitrogen treatment (N4 and N3) were significant higher than the lower level nitro- gen treatment (N2 and N1). The soil organic carbon mineralization rate increased with the temperature from 10 to 30℃. The dependence of soil carbon mineralization to temperature (Q10) was different under different nitrogen treatments that the Qlo value of N2 treatment was the lowest while that of the N4 treatment was the greatest. The soil organic carbon mineralization in Citrus orange orchard soil was affected significantly by high level nitrogen treatment, but with no significance under lower nitrogen treatment. [Conclusion] The dependence of soil carbon mineralization to temperature (Q10) increased with the increasing nitrogen input. The combination of nitrogen with temperature may increase the CO2 emission from Citrus orchard soil. 展开更多
关键词 Citrus orchard Soil organic carbon mineralization Nitrogen treatment TEMPERATURE
下载PDF
Effects of Temperature,Soil Moisture,Soil Type and Their Interactions on Soil Carbon Mineralization in Zoigê Alpine Wetland,Qinghai-Tibet Plateau 被引量:25
3
作者 GAO Junqin OUYANG Hua +2 位作者 LEI Guangchun XU Xingliang ZHANG Mingxiang 《Chinese Geographical Science》 SCIE CSCD 2011年第1期27-35,共9页
Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoige al... Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoige alpine wetland, Qinghai-Tibet Plateau, which is one of the most important peatlands in China. Through incubation experiment, this paper studied the effects of temperature, soil moisture, soil type (marsh soil and peat soil) and their interactions on CO2 and CH4 emission rates in Zoige alpine wetland. Results show that when the temperature rises from 5℃ to 35℃, CO2 emission rates increase by 3.3-3.7 times and 2.4-2.6 times under non-inundation treatment, and by 2.2-2.3 times and 4.1-4.3 times under inundation treatment in marsh soil and peat soil, respectively. Compared with non-inundation treatment, CO2 emission rates decrease by 6%-44%, 20%-60% in marsh soil and peat soil, respectively, under inundation treatment. CO2 emission rate is significantly affected by the combined effects of the temperature and soil type (p 〈 0.001), and soil moisture and soil type (p 〈 0.001), and CH4 emission rate was significantly affected by the interaction of the temperature and soil moisture (p 〈 0.001). Q10 values for CO2 emission rate are higher at the range of 5 ℃-25℃ than 25 ℃-35℃, indicating that carbon mineralization is more sensitive at low temperature in Zoige alpine wetland. 展开更多
关键词 alpine wetland carbon mineralization marsh soil peat soil soil moisture Qinghai-Tibet Plateau
下载PDF
Artificial root exudates and soil organic carbon mineralization in a degraded sandy grassland in northern China 被引量:13
4
作者 YongQing LUO XueYong ZHAO +2 位作者 Olof ANDRéN YangChun ZHU WenDa HUANG 《Journal of Arid Land》 SCIE CSCD 2014年第4期423-431,共9页
Plant root exudates contain various organic and inorganic components that include glucose, citric and oxalic acid. These components affect rhizosphere microbial and microfaunal activities, but the mechanisms are not f... Plant root exudates contain various organic and inorganic components that include glucose, citric and oxalic acid. These components affect rhizosphere microbial and microfaunal activities, but the mechanisms are not fully known. Studies concerned from degraded grassland ecosystems with low soil carbon(C) contents are rare, in spite of the global distribution of grasslands in need of restoration. All these have a high potential for carbon sequestration, with a reduced carbon content due to overutilization. An exudate component that rapidly decomposes will increase soil respiration and CO2 emission, while a component that reduces decomposition of native soil carbon can reduce CO2 emission and actually help sequestering carbon in soil. Therefore, to investigate root exudate effects on rhizosphere activity, citric acid, glucose and oxalic acid(0.6 g C/kg dry soil) were added to soils from three biotopes(grassland, fixed dune and mobile dune) located in Naiman, Horqin Sandy Land, Inner Mongolia, China) and subjected to a 24-day incubation experiment together with a control. The soils were also analyzed for general soil properties. The results show that total respiration without exudate addition was highest in grassland soil, intermediate in fixed dune and lowest in mobile dune soil. However, the proportion of native soil carbon mineralized was highest in mobile dune soil, reflecting the low C/N ratio found there. The exudate effects on CO2-C emissions and other variables differed somewhat between biotopes, but total respiration(including that from the added substrates) was significantly increased in all combinations compared with the control, except for oxalic acid addition to mobile dune soil, which reduced CO2-C emissions from native soil carbon. A small but statistically significant increase in pH by the exudate additions in grassland and fixed dune soil was observed, but there was a major decrease from acid additions to mobile dune soil. In contrast, electrical conductivity decreased in grassland and fixed dune soil and increased in mobile dune. Thus, discrete components of root exudates affected soil environmental conditions differently, and responses to root exudates in soils with low carbon contents can differ from those in normal soils. The results indicate a potential for, e.g., acid root exudates to decrease decomposition rate of soil organic matter in low carbon soils, which is of interest for both soil restoration and carbon sequestration. 展开更多
关键词 artificial root exudates carbon mineralization pH variation deteriorated grassland ecosystem Inner Mongolia
下载PDF
Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China 被引量:10
5
作者 YANG Li-xia PAN Jian-jun YUAN Shao-feng 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第1期39-43,共5页
The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils ... The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils derived from Changbai and Qilian Mountain areas. By analyzing and fitting the CO2 evolved rates with SOC mineralization, the results showed that active carbon pools accounted tor 1.0% to 8.5% of SOC with an average of mean resistant times (MRTs) for 24 days, and slow carbon pools accounted for 91% to 99% of SOC with an average of MRTs for 179 years. The sizes and MRTs of slow carbon pools showed that SOC in Qilian Mountain sites was more difficult to decompose than that in Changbai Mountain sites. By analyzing the effects of temperature, soil clay content and elevation on SOC mineralization, results indicated that mineralization of SOC was directly related to temperature and that content of accumulated SOC and size of slow carbon pools from Changbai Mountain and Qilian Mountain sites increased linearly with increasing clay content, respectively, which showed temperature and clay content could make greater effect on mineralization of SOC. 展开更多
关键词 Soil organic carbon Organic carbon mineralization Double exponential model Active carbon pools Slow carbon pools Mean resistant times (MRTs)
下载PDF
A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil 被引量:5
6
作者 NOURBAKHSH Farshid SHEIKH-HOSSEINI Ahmad R. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第10期788-793,共6页
The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralizati... The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (Co) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation. 展开更多
关键词 Salinity stress carbon mineralization First-order kinetics Plant residues Residue quality
下载PDF
Effects of Anthropogenic Disturbance on Sediment Organic Carbon Mineralization Under Different Water Conditions in Coastal Wetland of a Subtropical Estuary 被引量:4
7
作者 MOU Xiaojie LIU Xingtu +5 位作者 SUN Zhigao TONG Chuan HUANG Jiafang WAN Siang WANG Chun WEN Bolong 《Chinese Geographical Science》 SCIE CSCD 2018年第3期400-410,共11页
The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to inves... The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to investigate the effects of anthropogenic disturbance(aquaculture pond, pollutant discharge and agricultural activity) on soil organic C mineralization under different water conditions in the Minjiang River estuary wetland, Southeast China. The results showed that the organic C mineralization in the wetland soils was significantly affected by human disturbance and water conditions(P < 0.001), and the interaction between human disturbance activities and water conditions was also significant(P < 0.01). The C mineralization rate and the cumulative mineralized carbon dioxide-carbon(CO_2-C)(at the 49th day) ranked from highest to lowest as follows: Phragmites australis wetland soil > aquaculture pond sediment > soil near the discharge outlet > rice paddy soil. This indicated that human disturbance inhibited the mineralization of C in soils of the Minjiang River estuary wetland, and the inhibition increased with the intensity of human disturbance. The data for cumulative mineralized CO_2-C showed a good fit(R^2 > 0.91) to the first-order kinetic model C_t = C_0(1 – exp(–kt)). The kinetic parameters C_0, k and C_0 k were significantly affected by human disturbance and water conditions. In addition, the total amount of mineralized C(in 49 d) was positively related to C_0, C_0 k and electrical conductivity of soils. These findings indicated that anthropogenic disturbance suppressed the organic C mineralization potential in subtropical coastal wetland soils, and changes of water pattern as affected by human activities in the future would have a strong influence on C cycling in the subtropical estuarine wetlands. 展开更多
关键词 human disturbance carbon mineralization water conditions coastal wetland
下载PDF
Linking soil organic carbon mineralization to soil physicochemical properties and bacterial alpha diversity at different depths following land use changes
8
作者 Jing Guo Wulai Xiong +1 位作者 Jian Qiu Guibin Wang 《Ecological Processes》 SCIE EI CSCD 2023年第1期545-559,共15页
Background Anthropogenic land use changes(LUCs)impart intensifying impacts on soil organic carbon(SOC)turnover,leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as“source... Background Anthropogenic land use changes(LUCs)impart intensifying impacts on soil organic carbon(SOC)turnover,leading to uncertainty concerning SOC mineralization patterns and determining whether soils act as“source”or“sink”in the global carbon budget.Therefore,understanding the SOC mineralization characteristics of different LUC patterns and their potential influencing factors is crucial.An indoor incubation experiment was conducted to study the SOC mineralization patterns and their relevance to soil physicochemical properties,soil enzyme activity,SOC fractions,and bacterial alpha diversity.The soils were collected from two layers of five typical LUC patterns in Yellow Sea Forest Park,including four that were converted from wheat-corn rotation systems[a gingko plantation(G),a metasequoia plantation(M),a gingko-wheat-corn agroforestry system(GW),and a gingko-metasequoia system(GM)]and a traditional wheat-corn system(W).Results LUCs had significant and diverse impacts on the SOC content and SOC fraction contents and on soil enzyme activity.The cumulative SOC mineralization was significantly higher in the M systen than in the W and GW systems at 0-20 cm depth and higher in the G system than in the GW system at 20-40 cm depth after 60-day incubation.The mineralization ratio was highest in the W system and lowest in the GW system.The soil pH and bulk density had a significant negative correlation with the cumulative SOC mineralization,while the soil bacterial Shannon index had a significant positive correlation with cumulative SOC mineralization.Multiple stepwise linear regression analysis showed that the SOC mineralization potential was dominantly explained by the bacterial Shannon index and operational taxonomic units(OTUs).The GW system had lower potentially mineralizable SOC and higher SOC stability.Additionally,the incubation time and cumulative SOC mineralization were well fitted by the first-order kinetic equation.Conclusions LUCs significantly changed SOC mineralization characteristics and the results highlighted the important roles of the bacterial community in soil carbon cycling,which contributes to the fundamental understanding of SOC turnover regulation. 展开更多
关键词 Land use change Indoor incubation Soil organic carbon mineralization Soil enzyme activity Bacterial alpha diversity
原文传递
Kinetics of native and added carbon mineralization on incubating at different soil and moisture conditions in Typic Ustochrepts and Typic Halustalf
9
作者 Harjinder Kaur Raghava R.Kommalapati Gurbachan S.Saroa 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第2期365-381,共17页
The carbon dynamics in soils is of great importance due to its links to the global carbon cycle.The prediction of the behavior of native soil organic carbon(SOC)and organic amendments via incubation studies and mathem... The carbon dynamics in soils is of great importance due to its links to the global carbon cycle.The prediction of the behavior of native soil organic carbon(SOC)and organic amendments via incubation studies and mathematical modeling may bridge the knowledge gap in understanding complex soil ecosystems.Three alkaline Typic Ustochrepts and one Typic Halustalf with sandy,loamy sand,and clay loam texture,varying in percent SOC of 0.2;S_(1),0.42;S_(2),0.67;S_(3) and 0.82;S_(4) soils,were amended with wheat straw(WS),WS+P,sesbania green manure(GM),and poultry manure(PM)on 0.5%C rate at field capacity(FC)and ponding(P)moisture levels and incubated at 35℃for 1,15,30 and 45 d.Carbon mineralization was determined via the alkali titration method after 1,5,714,21,and 28 d.The SOC and inorganic carbon contents were determined from dried up(50℃)soil samples after 1,15,30,and 45 d of incubation.Carbon from residue mineralization was determined by subtracting the amount ofCO_(2)-C evolved from control soils.The kinetic models;monocomponent first order,two-component first or-der,and modified Gompertz equations were fitted to the carbon mineralization data from native and added carbon.The SOC decomposition was dependent upon soil properties,and moisture,however,added C was relatively independent.The carbon from PM was immobilized in S4.All the models fitted to the data predicted carbon mineralization in a similar range with few exceptions.The residues lead to the OC build-up in fine-textured soils having relatively high OC and cation exchange capacities.Whereas,fast degradation of applied OC in coarse-textured soils leads to faster mineralization and lower build-up from residues.The decline in CaCO_(3) after incubation was higher at FC than in the P moisture regime. 展开更多
关键词 Soil carbon sequestration Global carbon cycle Labile carbon dynamics Crop residues carbon mineralization
原文传递
Research progress of CO_(2) capture and mineralization based on natural minerals
10
作者 Chenguang Qian Chunquan Li +5 位作者 Peng Huang Jialin Liang Xin Zhang Jifa Wang Jianbing Wang Zhiming Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1208-1227,共20页
Natural minerals,such as kaolinite,halloysite,montmorillonite,attapulgite,bentonite,sepiolite,forsterite,and wollastonite,have considerable potential for use in CO_(2) capture and mineralization due to their abundant ... Natural minerals,such as kaolinite,halloysite,montmorillonite,attapulgite,bentonite,sepiolite,forsterite,and wollastonite,have considerable potential for use in CO_(2) capture and mineralization due to their abundant reserves,low cost,excellent mechanical prop-erties,and chemical stability.Over the past decades,various methods,such as those involving heat,acid,alkali,organic amine,amino sil-ane,and ionic liquid,have been employed to enhance the CO_(2) capture performance of natural minerals to attain high specific surface area,a large number of pore structures,and rich active sites.Future research on CO_(2) capture by natural minerals will focus on the full utiliza-tion of the properties of natural minerals,adoption of suitable modification methods,and preparation of composite materials with high specific surface area and rich active sites.In addition,we provide a summary of the principle and technical route of direct and indirect mineralization of CO_(2) by natural minerals.This process uses minerals with high calcium and magnesium contents,such as forsterite(Mg_(2)SiO_(4)),serpentine[Mg_(3)Si_(2)O(OH)_(4)],and wollastonite(CaSiO_(3)).The research status of indirect mineralization of CO_(2) using hydro-chloric acid,acetic acid,molten salt,and ammonium salt as media is also introduced in detail.The recovery of additives and high-value-added products during the mineralization process to increase economic benefits is another focus of future research on CO_(2) mineralization by natural minerals. 展开更多
关键词 natural mineral carbon dioxide capture MODIFICATION composite material carbon dioxide mineralization
下载PDF
Basalt Petrology, Water Chemistry, and Their Impact on the CO_(2) Mineralization Simulation at Leizhou Peninsula Sites, Southern China
11
作者 Jinglian Jiang Pengchun Li +4 位作者 Changyou Xia Jianxin Cai Muxin Liu Yongbin Jin Xi Liang 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期583-598,共16页
Mineral carbonation, which precipitates dissolved carbon dioxide(CO_(2)) as carbonate minerals in basaltic groundwater environments, is a potential technique for negative emissions. The Leizhou Peninsula in southwest ... Mineral carbonation, which precipitates dissolved carbon dioxide(CO_(2)) as carbonate minerals in basaltic groundwater environments, is a potential technique for negative emissions. The Leizhou Peninsula in southwest Guangdong province has extensive basalt, indicating a promising potential for CO_(2) storage through rapid mineralization. However, understanding of the basic geological setting, potential, and mechanisms of CO_(2) mineralization in the basalts of the Leizhou Peninsula is still limited. The mineralization processes associated with CO_(2)storage at two candidate sites in the area are investigated in this paper: Yongshi Farm and Tianyang Basin(of the dried maar lake). Petrography,rock geochemistry, basalt petrophysical properties, and groundwater hydrochemistry analyses are included in the study. Numerical simulation is used to examine the reaction process and its effects. The results show that basalts in the study areas mainly comprise plagioclase, pyroxene, and Fe–Ti oxides, revealing a total volume fraction exceeding 85%. Additionally, small amounts of quartz and fayalite are available, with volume fractions of 5.1% and 1.0%, respectively. The basalts are rich in divalent metal cations, which can form carbonate minerals, with an average of approximately 6.2 moles of metal cations per 1 kg of rock. The groundwater samples have a pH of 7.5–8.2 and are dominated by the Mg–Ca–HCO3 type. The basalts demonstrate a porosity range of 10.9% to 28.8%, with over 70% of interconnected pores. A 20-year geochemical simulation revealed that CO_(2) injection dissolves primary minerals, including anorthite, albite, and diopside, while CO_(2)mineralization dissolves precipitation secondary minerals, such as calcite, siderite, and dolomite. Furthermore, a substantial rise in pH from 7.6to 10.6 is observed in the vicinity of the injected well, accompanied by a slight reduction in porosity from 20% to 19.8%. Additionally, 36.8% of the injected CO_(2) underwent complete mineralization within five years, revealing an increasing percentage of 66.1% if the experimental period is extended to 20 years. The presence of abundant divalent metal cations in basalts and water-bearing permeable rocks in the Leizhou Peninsula supports the potential for mineral carbonation in basalts, as indicated by the geochemical simulation results. Additional research is necessary to identify the factors that influence the CO_(2) mineralization, storage, and sensitivity analysis of basalt in the Leizhou Peninsula. 展开更多
关键词 CO_(2)mineralization Mineral carbonation Basalt carbonation Geochemistry simulation Leizhou Peninsula
下载PDF
CO_(2) mineralization by typical industrial solid wastes for preparing ultrafine CaCO_(3): A review
12
作者 Run Xu Fuxia Zhu +8 位作者 Liang Zou Shuqing Wang Yanfang Liu Jili Hou Chenghao Li Kuntong Song Lingzhao Kong Longpeng Cui Zhiqiang Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1679-1697,共19页
Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typ... Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies. 展开更多
关键词 Industrial solid wastes Resource utilization Mineral carbonation Ultrafine CaCO_(3) carbon emission reduction
下载PDF
Carbon Mineralization Associated with Soil Aggregates as Affected by Short-term Tillage 被引量:1
13
作者 郭琳琳 西村拓 +1 位作者 井本博美 孙志刚 《Journal of Resources and Ecology》 CSCD 2016年第2期101-106,共6页
Abstract: Tillage practice has received much attention due to its effects on greenhouse gas emissions from agricultural fields. The understanding of carbon mineralization associated with soil aggregates helps to expl... Abstract: Tillage practice has received much attention due to its effects on greenhouse gas emissions from agricultural fields. The understanding of carbon mineralization associated with soil aggregates helps to explore the influence mechanisms of tillage practice on soil carbon dynamics. Total carbon and carbon mineralization rates associated with various sizes of soil aggregates under no-tillage and tillage treatments were studied with a volcanic ash soil. Total carbon content in microaggregates (〈0.25 mm) was higher than that in macroaggregates (〉0.25 mm) for both the no-tillage and tillage treatments, since microaggregates of the volcanic ash soil include more fine silts and clay particles absorbing more organic agents. The carbon mineralization rate and total carbon were highly correlated (R2 = 0.6552, P= 0.002) for both treatments, suggesting that soil aggregate size is an important factor to influence the carbon mineralization rate. The no-tillage system showed the advantage of improving soil structure for volcanic ash soil. A larger proportion of microaggregates with relatively high carbon mineralization might contribute to the greater carbon loss from tilled soils. Unlike aggregate size, short-term tillage showed no significant effects on carbon mineralization rates associated with aggregates in a specific size class. 展开更多
关键词 carbon mineralization rate soil aggregates TILLAGE total carbon
原文传递
Composition and mineralization of soil organic carbon pools in four single-tree species forest soils 被引量:4
14
作者 Qingkui Wang Micai Zhong 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第6期1277-1285,共9页
Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To un... Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools. 展开更多
关键词 ^13C nuclear magnetic resonance Labile soil organic carbon Monoculture plantation Soil organic carbon mineralization Tree species
下载PDF
Recalcitrant carbon controls the magnitude of soil organic matter mineralization in temperate forests of northern China 被引量:2
15
作者 Huan Zhang Zhiyong Zhou 《Forest Ecosystems》 SCIE CSCD 2018年第3期211-220,共10页
Background: The large potential of the soil organic carbon(SOC) pool to sequester CO2from the atmosphere could greatly ameliorate the effect of future climate change. However, the quantity of carbon stored in terrestr... Background: The large potential of the soil organic carbon(SOC) pool to sequester CO2from the atmosphere could greatly ameliorate the effect of future climate change. However, the quantity of carbon stored in terrestrial soils largely depends upon the magnitude of SOC mineralization. SOC mineralization constitutes an important part of the carbon cycle, and is driven by many biophysical variables, such as temperature and moisture.Methods: Soil samples of a pine forest, an oak forest, and a pine and oak mixed forest were incubated for 387 days under conditions with six temperature settings(5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C) and three levels of soil moisture content(SMC, 30%, 60%, 90%). The instantaneous rate of mineralized SOC was periodically and automatically measured using a Li-Cor CO2analyzer. Based on the measured amount of mineralized SOC,carbon fractions were estimated separately via first-order kinetic one-and two-compartment models.Results: During the 387 day incubation experiment, accumulative mineralized carbon ranged from 22.89 mg carbon(C) ·g-1SOC at 30 °C and 30% SMC for the mixed forest to 109.20 mg C·g-1SOC at 15 °C and 90% SMC for the oak forest. Mineralized recalcitrant carbon varied from 18.48 mg C·g-1SOC at 30 °C and 30% SMC for the mixed forest to 104.98 mg C·g-1SOC at 15 °C and 90% SMC for the oak forest, and contributed at least 80% to total mineralized carbon.Conclusions: Based on the results of this experiment, the soil organic matter of the pure broadleaved forest is more vulnerable to soil microbial degradation in northern China; most of the amount of the mineralized SOC derived from the recalcitrant carbon pool. Labile carbon fraction constitutes on average 0.4% of SOC across the three forest types and was rapidly digested by soil microbes in the early incubation stage. SOC mineralization markedly increased with soil moisture content, and correlated parabolically to temperature with the highest value at 15 °C. No significant interaction was detected among these variables in the present study. 展开更多
关键词 carbon mineralization Soil carbon fraction Long time incubation Two-compartment model Temperate forest
下载PDF
Effect of Land Use Management Patterns on Mineralization Kinetics of Soil Organic Carbon in Mount Bambouto Caldera Area of Cameroon
16
作者 Formeluh Abraham Toh Lawrence Monah Ndam +1 位作者 Tsi Evaristus Angwafo Ngosong Christopher 《Open Journal of Soil Science》 2020年第9期391-409,共19页
<p align="justify"> <span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span>Soil organic carbon (SOC) mineralization was carried ... <p align="justify"> <span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span>Soil organic carbon (SOC) mineralization was carried out on soil samples collected from two depths: 0 - 20 cm and 20 - 40 cm for all land use (LU) types (grasslands, croplands, natural forest/fallow lands, cocoa/palm plantations, and settlement/agro-forests). Microbiological analyses were carried out by measuring microbial activity in 40 g of dried soil samples wetted to 60% water holding capacity and incubated at 27 °C. Carbon dioxide (CO<sub>2</sub>) emission was measured for 10 weeks using a CO<sub>2</sub> trap. Descriptive and graphical analyses of CO<sub>2</sub> respiration were done using CO<sub>2 </sub>emission data. Models were developed to describe CO<sub>2</sub> respiration and the first order kinetic model provided best fit to C-mineralization. Potentially mineralizable carbon (C<sub>o</sub>) and C-mineralization rate were higher in grasslands than other LU types, indicating a higher rate of microbial activity and carbon cycling. Metabolic quotient was higher in forest/fallow lands and reflects greater stress of the microbial community and a high requirement of maintenance energy. Grasslands enhanced more SOC accumulation and decomposition, suggesting a better carbon sink than other land use and management systems (LUMS). Microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) varied across LU patterns with maximum values in grasslands and minimum values in natural forest/fallow lands insinuating better soil quality for grasslands. MBC and SOC positively correlated with C<sub>o</sub> and C-mineralization, which intimates that C-mineralization is influenced by availability of MBC and SOC. Metabolic quotient (qCO<sub>2</sub>) negatively correlated with microbial quotient (MBC:SOC), depicting that higher values of qCO<sub>2</sub> signify difficulties in using organic substrates during microbial activity as a result of low MBC:SOC. Changes in LUMS affected the mineralization kinetics of SOC in the study area. </p> 展开更多
关键词 Land Use carbon mineralization Kinetic Models Mount Bambouto Caldera
下载PDF
Carbon and nitrogen mineralization in soils along a desertification gradient in the semiarid Horqin Sandy Land, Northern China 被引量:2
17
作者 YuQiang Li HaLin Zhao TongHui Zhang YuLin Li XiaoAn Zuo 《Research in Cold and Arid Regions》 2010年第1期21-30,共10页
This experiment was conducted in three sites along a desertification gradient in Horqin Sandy Land, Northern China. Soils una-mended and amended with five types of plant residue in a wide range of C:N ratios from 9.9... This experiment was conducted in three sites along a desertification gradient in Horqin Sandy Land, Northern China. Soils una-mended and amended with five types of plant residue in a wide range of C:N ratios from 9.9 to 82.2 were incubated for 70 days, during which C and N mineralization were measured. Along the desertification gradient from fixed sand dune to semifixed, and mobile sand dune: cumulative CO2-C produced from the unamended soils was 231.6, 193.3 and 61.9 μg/g, respectively, while net inorganic N was 22.9, 17.6 and 0.9 mg/kg. Soils amended with residues produced more CO2-C than the unamended soils across all sites. During the first 10 days, C mineralization rate of residue-amended soils decreased with the increase of C:N ratio at each site. However, the mineralization rates were poorly correlated with the C:N ratio in subsequent stage of incubation. Soils of mobile sand dune amended with higher C:N ratio (more than 32) residues produced less CO2-C than that of fixed and semifixed sand dune. NO3--N was the predominant form of inorganic N during the mineralization process in sandy soils. Carbon-to-nitrogen ratio (C:N) can be regarded as a predictor of the speed of N mineralization in sandy soil. The more C. microphylla residue with the lowest C:N ratio (9.9) added in soils, the more net inorganic N released. Our results suggest that C. microphylla residue when added to soil would potentially provide short-term plant available N and improve the soil quality in sandy land. The desertification process postponed the release of inorganic N from plant residues. 展开更多
关键词 carbon and nitrogen mineralization residue amendment desertification Horqin Sandy Land
下载PDF
Origin of carbonate minerals and impacts on reservoir quality of the Wufeng and Longmaxi Shale, Sichuan Basin
18
作者 Yang Chen Jian-Hua Zhao +5 位作者 Qin-Hong Hu Ke-Yu Liu Wei Wu c Chao Luo Sheng-Hui Zhao Yu-Ying Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3311-3336,共26页
The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geoch... The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geochemical and petrological analyses show that calcite grains have a negative Ce anomaly indicating they formed in the oxidizing environment of seawater. The high carbonate mineral contents in the margin of basin indicate that calcite grains and cores of dolomite grains appear largely to be of detrital origin. The rhombic rims of dolomite grains and dolomite concretions with the δ^(13)C of –15.46‰ and the enrichment of middle rare earth elements were formed during the sulfate-driven anaerobic oxidation of methane. The calcite in radiolarian were related to the microbial sulfate reduction for the abundant anhedral pyrites and δ^(13)C value of –11.34‰. Calcite veins precipitated in the deep burial stage with homogenization temperature of the inclusions ranging from 146.70 ℃ to 182.90 ℃. The pores in shale are mainly organic matter pores with pore size mainly in the range of 1–20 nm in diameter. Carbonate minerals influence the development of pores through offering storage space for organic matter. When calcite contents ranging from 10% to 20%, calcite grains and cement as rigid framework can preserve primary pores. Subsequently, the thermal cracking of liquid petroleum in primary pores will form organic matter pores. The radiolarian were mostly partially filled with calcite, which combining with microcrystalline quartz preserved a high storage capacity. 展开更多
关键词 carbonate minerals genesis Diagenetic evolution carbonate mineral types Reservoir quality Wufeng and Longmaxi Shale
下载PDF
ORE-BEARING GROUNDWATER MINERALIZATION OF DEVONIAN CARBONATE ROCK-HOSTED Pb-Zn AND Sb DEPOSITS IN NANLING,CHINA
19
《Geotectonica et Metallogenia》 1994年第Z2期105-107,共3页
关键词 Pb ROCK ORE-BEARING GROUNDWATER mineralization OF DEVONIAN carbonATE ROCK-HOSTED Pb-Zn AND Sb DEPOSITS IN NANLING CHINA Zn SB
下载PDF
Soil Carbon Pool Management Index under Different Straw Retention Regimes 被引量:5
20
作者 曾研华 吴建富 +4 位作者 何虎 潘晓华 石庆华 吴自明 邓伟明 《Agricultural Science & Technology》 CAS 2012年第4期818-822,共5页
[Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), a... [Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), active carbon (CA) and mineralized carbon (CM) were analyzed, and carbon pool active (A), carbon pool active index (A/), carbon pool index (CPI) and carbon pool management index (CPMi) for each treat- ment were calculated. [Result] Compared with the unfertilized treatment (CK), CToc, CA, CM and the available ratio of soil carbon were increased in the treatment of re- turning early season and late season rice straws to field. With the same nutrient application, CToc, CA and the available ratio of soil carbon in the field with straw re- turned to field were higher than that of straw incineration and no straw returning, and the change in soil CA content was more significant. The difference in CPMI be- tween different treatments reached significant or very significant level, and the value was in the order of straw directly returned to field 〉 straw returned to field after in- cineration 〉 no straw returned to field. [Conclusion] This study provided theoretical bases for the increase of soil CA content and soil fertility in double rice fields. 展开更多
关键词 Double-cropping paddy field Different straw retention regimes Total or- ganic carbon Active carbon Mineralized carbon carbon pool management index
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部