期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life 被引量:1
1
作者 Min Wang Qirong Liu +2 位作者 Guangming Wu Jianmin Ma Yongbing Tang 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期548-558,共11页
Owing to the advantages of high operating voltage,environmental benignity,and low cost,potassium-based dual-ion batteries(KDIBs)have been considered as a potential candidate for large-scale energy storage.However,KDIB... Owing to the advantages of high operating voltage,environmental benignity,and low cost,potassium-based dual-ion batteries(KDIBs)have been considered as a potential candidate for large-scale energy storage.However,KDIBs generally suffer from poor cycling performance and unsatisfied capacity,and inactive components of conductive agents,binders,and current collector further lower their overall capacity.Herein,we prepare coral-like carbon nanowres(CCNWs)doped with nitrogen as a binder-free anode material for K^(+)-ion storage,in which the unique coral-like porous nanostructure and amorphous/short-range-ordered composite feature are conducive to enhancing the structural stability,to facilitating the ion transfer and to boosting the full utilization of active sites during potassiation/de-potassiation process.As a result,the CCNW anode possesses a hybrid K^(+)-storage mechanism of diffusive behavior and capacitive adsorption,and stably delivers a high capacity of 276 mAh g^(-1)at 50 mA g^(-1),good rate capability up to 2 A g^(-1),and long-term cycling stability with 93%capacity retention after 2000 cycles at 1 A g^(-1).Further,assembling this CCNW anode with an environmentally benign expanded graphite(EG)cathode yields a proof-of-concept KDIB,which shows a high specific capacity of 134.4 mAh g^(-1)at 100 mA g^(-1),excellent rate capability of 106.5 mAh g^(-1)at 1 A g^(-1),and long-term cycling stability over 1000 cycles with negligible capacity loss.This study provides a feasible approach to developing high-performance anodes for potassium-based energy storage devices. 展开更多
关键词 carbon nanowires Binder-free K-ion Dual-ion batteries Structural stability
下载PDF
Atomic Pt anchored on hierarchically porous monolithic carbon nanowires as high-performance catalyst for liquid hydrogenation
2
作者 Zhengbin Tian Xiaohui Deng +1 位作者 Ping He Guang-Hui Wang 《Nano Research》 SCIE EI CSCD 2023年第4期5880-5886,共7页
Monolithic catalysts play a crucial role in various catalytic applications,e.g.,chemical synthesis,energy conversion,and environmental treatment,but their catalytic efficiency is often limited by the restricted mass t... Monolithic catalysts play a crucial role in various catalytic applications,e.g.,chemical synthesis,energy conversion,and environmental treatment,but their catalytic efficiency is often limited by the restricted mass transfer and insufficient exposure of active sites.Herein,we present a dual-templating strategy to fabricate atomic Pt dispersed on monolithic N-doped mesoporous carbon nanowires(Pt_(1)/NMCW)with abundant super-/macropores,which,as monolithic catalyst,exhibits high catalytic performance in hydrogenation of 4-nitrophenol(4-NP).During synthesis,triblock copolymer(Pluronic F127)is employed as a primary soft template to generate the mesoporous structured carbon nanowires to improve the accessibility of Pt single sites;KCl crystallite is used as a secondary hard template to create the super-/macropores,which are beneficial for enhancing the mass transfer efficiency.Thanks to the dual-templating strategy that creates the monolithic carbon nanowires with hierarchically porous structure,the obtained Pt_(1)/NMCW shows highly enhanced catalytic activity in 4-NP hydrogenation,outperforming its analogue synthesized without using KCl as template and being comparable to the nano-powder catalyst(i.e.,atomic Pt loaded on the Ndoped carbon nanospheres,Pt_(1)/NCS). 展开更多
关键词 dual-templating strategy monolithic catalysts porous carbon nanowires Pt single atoms HYDROGENATION
原文传递
Porous NiCo_2O_4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density 被引量:6
3
作者 Huifang Zhang Dengji Xiao +5 位作者 Qian Li Yuanyuan Ma Shuxia Yuan Lijing Xie Chengmeng Chen Chunxiang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期195-202,共8页
Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays stru... Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays structure design can effectively enhance the utilization of active material. In this article, we synthesis a porous NiCo_2O_4 nanowires arrays, which were intimate contact with flexible carbon cloth(CC)by a facile hydrothermal reaction and calcination treatment. The rational array structures of NiCo_2O_4 facilitate the diffusion of electrolyte and effectively increase the utilization of active material. The asobtained NiCo_2O_4@CC electrode exhibits a high capacitance of 1183 mF cm^(-2) and an outstanding capacitance retention of 90.4% after 3000 cycles. Furthermore, a flexible asymmetric supercapacitor(ASC)using NiCo_2O_4@CC as positive electrode and activated carbon cloth(ACC) as negative electrode was fabricated, which delivers a large capacitance of 750 mF cm^(-2)(12.5 F cm^(-3)), a high energy density of 0.24 mWh cm^(-2)(3.91 mWh cm^(-3)), as well as excellent cycle stability under different bending states.These remarkable results suggest that as-assembled NiCo_2O_4@CC//ACC ASC is a promising candidate in flexible energy storage applications. 展开更多
关键词 All solid-stateNiCo2O4 nanowires carbon cloth Activated carbon cloth Asymmetric supercapacitor
下载PDF
Structural,electronic,and optical properties of hexagonal and triangular SiC NWs with different diameters
4
作者 李彦景 李亚林 +2 位作者 李树龙 龚裴 房晓勇 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期433-437,共5页
Silicon carbide(SiC) is a wideband gap semiconductor with great application prospects,and the SiC nanomaterials have attracted more and more attention because of their unique photoelectric properties.According to th... Silicon carbide(SiC) is a wideband gap semiconductor with great application prospects,and the SiC nanomaterials have attracted more and more attention because of their unique photoelectric properties.According to the first-principles calculations,we investigate the effects of diameter on the electronic and optical properties of triangular SiC NWs(T-NWs)and hexagonal SiC NWs(H-NWs).The results show that the structure of H-NWs is more stable than T-NWs,and the conduction band bottom of H-NWs is more and more deviated from the valence band top,while the conduction band bottom of T-NWs is closer to the valence band top.What is more,H-NWs and T-NWs have anisotropic optical properties.The result may be helpful in developing the photoelectric materials. 展开更多
关键词 silicon carbon nanowires stability electronic properties optical properties first-principles theory
下载PDF
Nb_2O_5 nanowires in-situ grown on carbon fiber: A high-efficiency material for the photocatalytic reduction of Cr(Ⅵ) 被引量:2
5
作者 Yucheng Du Shihao Zhang +2 位作者 Jinshu Wang Junshu Wu Hongxing Dai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期358-367,共10页
Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of ... Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction(XRD), energy-dispersive spectroscopy(EDS), scanning electron microscopy(SEM), transmission electron microscopy(TEM), selected-area electron diffraction(SAED), UV–visible spectroscopy(UV–vis), N2 adsorption–desorption, Fourier transform infrared spectroscopy(FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined.Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160°C for 14 hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115 mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(Ⅵ) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1 hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area,abundant surface hydroxyl groups, and good UV-light absorption ability. 展开更多
关键词 carbon fiber Niobium oxide nanowire Photocatalytic reduction Cr(Ⅵ) removal Adsorption efficiency
原文传递
Composition-Dependent Mechanical and Thermal Transport Properties of Carbon/Silicon Core/Shell Nanowires
6
作者 荆宇航 于开平 +1 位作者 覃弦 沈军 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第6期743-747,共5页
Molecular dynamics(MD) simulations are performed to study the composition-dependent elastic modulus and thermal conductivity for carbon/silicon core/shell nanowires(NWs).For each concerned carbon/silicon core/shell NW... Molecular dynamics(MD) simulations are performed to study the composition-dependent elastic modulus and thermal conductivity for carbon/silicon core/shell nanowires(NWs).For each concerned carbon/silicon core/shell NW with a specified diameter,it is found that elastic modulus is reduced with a linear dependence on cross-sectional area ratio.The fact matches well with the results of theoretical model.Analysis based on the cross-sectional stress distribution indicates that the core region of core/shell NW is capable of functioning as a mechanical support.On the other hand,thermal conductivity also relies on the cross-sectional area ratio of amorphous silicon shell.The core/shell interface plays a considerable influence on the thermal transport property. The decreasing rate of thermal conductivity is gradually decreased as the composition of amorphous silicon shell increases.In addition,by calculating the phonon density of state,we demonstrate that the reduction in thermal conductivity of the core/shell NW stems from the increase of the low frequency modes and the depression of high-frequency nonpropagating diffusion modes.These results provide an effective way to modify the properties of core/shell NWs for related application. 展开更多
关键词 carbon/silicon core/shell nanowire (NW) elastic modulus thermal conductivity
原文传递
Regeneration of photovoltaic industry silicon waste toward high-performance lithium-ion battery anode
7
作者 Kai Wang Xiao-Bin Zhong +12 位作者 Yue-Xian Song Yao-Hui Zhang Yan-Gang Zhang Xiao-Gang You Pu-Guang Ji Kurbanov Mirtemir Shodievich Umedjon Khalilov Gong-Kai Wang Xin Zhang Xing-Liang Yao Feng Li Jun-Fei Liang Hua Wang 《Rare Metals》 SCIE EI CAS 2024年第10期4948-4960,共13页
The diamond-wire sawing silicon waste(DWSSW)from the photovoltaic industry has been widely considered as a low-cost raw material for lithium-ion battery silicon-based electrode,but the effect mechanism of impurities p... The diamond-wire sawing silicon waste(DWSSW)from the photovoltaic industry has been widely considered as a low-cost raw material for lithium-ion battery silicon-based electrode,but the effect mechanism of impurities presents in DWSSW on lithium storage performance is still not well understood;meanwhile,it is urgent to develop a strategy for changing DWSSW particles into high-performance electrode materials.In this work,the occurrence state of impurities presents in DWSSW was carefully analyzed using in situ Ar ion etching technology Then,the novel Si@C@SiO_(x)@PAl-NDC composite was designed through in situ encapsulation strategy.The obtained Si@C@SiO_(x)@PAl-NDC electrode shows a high first capacity of 2343.4 mAh·g^(-1)with an initial Coulombic efficiency(ICE)of 84.4%under current density of 1.0 A·g^(-1),and can deliver an impressive capacity of 984.9 mAh·g^(-1)after 200 cycles.Combined numerical simulation modeling calculations,the increase in proportion of Si^(4+)/Si^(0)and Si^(3+)/Si^(0)valence states in SiO_(x)layer leads to a decrease in von Mises stress,which ultimately improves the cycling structural stability.Meanwhile,the porous 2D-3D aluminum/nitrogen(Al/N)co-doped carbon layer and nanowires on SiO_(x)layer can provide abundant active sites for lithium storage due to its developed hierarchical pores structure,which facilitates ion transport What is more,the performance of Si@C@SiO_(x)@PAl-NDC//LiFePO_(4)full cell shows its great potential in practical application. 展开更多
关键词 Sawing silicon waste In situ encapsulation Aluminum/nitrogen co-doped Porous carbon nanowires Lithium-ion batteries
原文传递
Self-supported ternary Co0.5Mn0.5P/carbon cloth (CC) as a high-performance hydrogen evolution electrocatalyst 被引量:5
8
作者 Xiaoyan Zhang Wenling Gu Erkang Wang 《Nano Research》 SCIE EI CAS CSCD 2017年第3期1001-1009,共9页
Scalable production of earth-abundant, easy-to-prepare, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is essential for sustainable energy-based systems. Herein, we systematically stud... Scalable production of earth-abundant, easy-to-prepare, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is essential for sustainable energy-based systems. Herein, we systematically studied the electrocatalytic HER performance of a self-supported ternary Co0.5Mn0.5P/carbon cloth (CC) nanomaterial prepared using a hydrothermal reaction and phosphorizafion process. Electrochemical tests demonstrated that the ternary Co0.5Mn0.5P/CC nanomaterial could be a highly active electrocatalyst in acidic media, with overpotentials of only 41 and 89 mV, affording current densities of 10 and 100 mA.cm-2, respectively, and a Tafel slope of 41.7 mV.dec-1. Furthermore, the electrocatalyst exhibited superior stability, with 3,000 cycles of cyclic voltammetry from -0.2 to 0.2 V at a scan rate of 100 mV.s-1 and 40 h of static polarization at a fixed overpotential of large-scale hydrogen production. 83 mV, indicating its potential for 展开更多
关键词 TERNARY Co0.5Mn0.5P/carbon cloth(CC) nanowire self-supported electrode hydrogen evolution
原文传递
将Cu_(2)S超细纳米粒子均匀植入碳纳米线以实现高效钾离子电池负极
9
作者 朱川南 赵旭雯 +4 位作者 徐一帆 段丽平 田瑞琪 廖家英 周小四 《Science China Materials》 SCIE EI CAS CSCD 2023年第7期2613-2620,共8页
由于其高容量和丰富的资源,过渡金属硫化物(TMS)已被证明是钾离子电池具有吸引力的负极材料之一.然而,TMS通常受到导电性差和体积膨胀大的限制,可能导致结构不稳定和电池循环性能差.本工作通过将超小Cu_(2)S纳米粒子植入碳纳米线(Cu_(2)... 由于其高容量和丰富的资源,过渡金属硫化物(TMS)已被证明是钾离子电池具有吸引力的负极材料之一.然而,TMS通常受到导电性差和体积膨胀大的限制,可能导致结构不稳定和电池循环性能差.本工作通过将超小Cu_(2)S纳米粒子植入碳纳米线(Cu_(2)S@C NWs),显著减轻了纳米粒子聚集和有害的结构退化.与传统的Cu_(2)S颗粒相比,每根纳米线的体积变化都得到了有效调节,这极大地改善了形态完整性,从而显著提高了循环寿命.正如预期的那样,Cu_(2)S@C NW负极可提供391.1 mA h g^(-1)的大可逆容量,在5 A g^(-1)时具有118.1 mA h g^(-1)的出色倍率性能,以及在2 A g^(-1)下经过500次循环后77.2%的高容量保持率.此外,当Cu_(2)S@C NW负极与KVP04F/CNTs正极组装形成钾离子全电池时,在50 mA g^(-1)下循环100次后显示出110.8 mA h g^(-1)的良好放电容量.这种纳米颗粒阻聚策略拓宽了纳米工程的视野,以释放嵌脱钾引起的应力,并促进钾离子电池高效负极的进一步发展. 展开更多
关键词 potassium-ion battery ANODE Cu_(2)S carbon nanowires porous structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部