期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Boosting energy-storage capability in carbon-based supercapacitors using low-temperature water-in-salt electrolytes
1
作者 Joao Pedro A.Santos Manuel J.Pinzón +4 位作者 érick A.Santos Rafael Vicentini Cesar J.B.Pagan Leonardo M.Da Silva Hudson Zanin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期521-530,I0013,共11页
Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, ... Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, such as higher freezing point depression(FPD) and robustness. Besides the traditional organic-and aqueous-based(salt-in-water) electrolytes used in SCs, water-in-salt(WISE) sodium perchlorate electrolytes offer high FPD, non-flammability, and low-toxicity conditions, allowing the fabrication of safer, environmentally friendly, and more robust devices. For the first time, this work reports a comprehensive study regarding WISE system’s charge-storage capabilities and physicochemical properties under low-temperature conditions(T < 0 ℃) using mesoporous carbon-based electrodes. The effect of temperature reduction on the electrolyte viscosity and electrical properties was investigated using different techniques and the in-situ(or operando) Raman spectroscopy under dynamic polarization conditions.The cell voltage, equivalent series resistance, and specific capacitance were investigated as a function of the temperature. The cell voltage(U) increased ~ 50%, while the specific capacitance decreased ~20%when the temperature was reduced from 25 ℃ to -10 ℃. As a result, the maximum specific energy(E = CU^(2)/2) increased ~ 100%. Therefore, low-temperature WISEs are promising candidates to improve the energy-storage characteristics in SCs. 展开更多
关键词 carbon supercapacitors Water-in-salt electrolytes Low-temperature charge-storage Specific energy improvement at low temperatures
下载PDF
Temperature stability of symmetric activated carbon supercapacitors assembled with in situ electrodeposited poly (vinyl alcohol) potassium borate hydrogel electrolyte 被引量:1
2
作者 Wanwan Lv Runping Xue +1 位作者 Sheng Chen Mengjin Jiang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第4期637-640,共4页
The temperature stability of supercapacitor(SC) is largely determined by the properties of the electrolyte.Hydrogel electrolytes(HGE), due to their hydrophilic polymer skeleton, show different temperature stabilit... The temperature stability of supercapacitor(SC) is largely determined by the properties of the electrolyte.Hydrogel electrolytes(HGE), due to their hydrophilic polymer skeleton, show different temperature stability to that of liquid aqueous electrolytes. In this study, symmetric activated carbon(AC) SCs had been assembled with in situ electrodeposited poly(vinyl alcohol) potassium borate(PVAPB) HGE. The electrochemical performance of the SCs was systematically studied at different temperatures. Results show that the conductivity of PVAPB HGE is comparable with that of liquid aqueous electrolytes at different temperatures. The operating temperature range of PVAPB HGE SCs is -5–60°C, while those of the 1 mol/L Na2SO4SCs and the 0.9 mol/L KClSCs are 20–80°C and 20–40°C, respectively. The specific capacitance of PVAPB HGE SC is higher than those of SCs using liquid aqueous electrolytes at any temperature. The excellent temperature stability of PVAPB HGE makes it possible to build stable aqueous SCs in the wider temperature range. 展开更多
关键词 Hydrogel electrolyte Activated carbon Electrodeposition Temperature stability Supercapacitor
原文传递
Optimized Synthesis of Carbon Aerogels via Ambient Pressure Drying Process as Electrode for Supercapacitors
3
作者 袁磊 CHANG Lijuan +5 位作者 FU Zhibing YANG Xi JIAO Xingli TANG Yongjian LIU Xichuan 王朝阳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1325-1331,共7页
Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas... Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 m A/cm^2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950 ℃ and 4 h, respectively. 展开更多
关键词 supercapacitors carbon aerogels ambient pressure drying process activation
下载PDF
MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application 被引量:11
4
作者 Minmin Hu Tao Hu +4 位作者 Renfei Cheng Jinxing Yang Cong Cui Chao Zhang Xiaohui Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期161-166,共6页
Flexible supercapacitors are promising energy storage devices in wearable smart electronics. Exploring cost-efficient electrodes with high capacitance would promote the wide-scale application of such capacitors. Herei... Flexible supercapacitors are promising energy storage devices in wearable smart electronics. Exploring cost-efficient electrodes with high capacitance would promote the wide-scale application of such capacitors. Herein, in order to explore a methodology for preparing low cost, flexible, tough, and up-scalable supercapacitor electrodes, silk textile is directly carbonized to make a conductive free-standing textile substrate. Through mildly baking the surfactant-free TiCTflakes suspension loaded on the carbonized silk cloth, a uniform and adhesive coating consisting of nanometer-thick TiCTflakes is well established on the conductive fabric support, forming a MXene-coated flexible textile electrode. The fabricated electrode exhibits a high areal capacitance of 362 m F/cm~2 with excellent cyclability and flexibility. Moreover,capacitance changes neglegibly under the bending deformation mode. This study elucidates the feasibility of using silk-derived carbon cloth from biomss for MXene-based flexible supercapacitor. 展开更多
关键词 MXene Silk texitle carbon cloth Flexibility Supercapacitor
下载PDF
Porous NiCo_2O_4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density 被引量:6
5
作者 Huifang Zhang Dengji Xiao +5 位作者 Qian Li Yuanyuan Ma Shuxia Yuan Lijing Xie Chengmeng Chen Chunxiang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期195-202,共8页
Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays stru... Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays structure design can effectively enhance the utilization of active material. In this article, we synthesis a porous NiCo_2O_4 nanowires arrays, which were intimate contact with flexible carbon cloth(CC)by a facile hydrothermal reaction and calcination treatment. The rational array structures of NiCo_2O_4 facilitate the diffusion of electrolyte and effectively increase the utilization of active material. The asobtained NiCo_2O_4@CC electrode exhibits a high capacitance of 1183 mF cm^(-2) and an outstanding capacitance retention of 90.4% after 3000 cycles. Furthermore, a flexible asymmetric supercapacitor(ASC)using NiCo_2O_4@CC as positive electrode and activated carbon cloth(ACC) as negative electrode was fabricated, which delivers a large capacitance of 750 mF cm^(-2)(12.5 F cm^(-3)), a high energy density of 0.24 mWh cm^(-2)(3.91 mWh cm^(-3)), as well as excellent cycle stability under different bending states.These remarkable results suggest that as-assembled NiCo_2O_4@CC//ACC ASC is a promising candidate in flexible energy storage applications. 展开更多
关键词 All solid-stateNiCo2O4 nanowires carbon cloth Activated carbon cloth Asymmetric supercapacitor
下载PDF
Bendable tube-shaped supercapacitor based on reduced graphene oxide and Prussian blue coated carbon fiber yarns for energy storage 被引量:4
6
作者 Mohd.Khalid Ana M.B.Honorato 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期866-873,共8页
Carbon fiber yarns(CFY) are promising as a new type of flexible building blocks for the construction of flexible architectures for the energy storage applications. The main hurdle with CFY is how to make them high e... Carbon fiber yarns(CFY) are promising as a new type of flexible building blocks for the construction of flexible architectures for the energy storage applications. The main hurdle with CFY is how to make them high energy and power capable by using economically and environmentally viable materials. Here,we report reduced graphene oxide(r GO) and Prussian blue(PB) coated CFY, derived from a facile electrochemical process at room temperature for supercapacitor electrodes. The PB coated CFY and r GO coated CFY electrodes exhibit the excellent gravimetric capacitance of 339 F/g and 160.2 F/g, respectively, in aqueous KCl electrolyte in three-electrode cell configuration. When we coupled these electrodes inside the flexible plastic tube and separated by the electrolyte wet filter paper in order to construct flexible architecture, the resulting device delivers excellent specific energy of 52.1 Wh/kg and 26.5 Wh/kg with offering specific power of 3100 W/kg and 14400 W/kg respectively, under a wide operating potential of1.8 V with excellent rate capability. The device shows high tolerance towards bending, and retained its efficiency to the capacitance after being bent at an angle of 360° for 200 bending cycles. 展开更多
关键词 carbon fiber yarns Bendable supercapacitor Energy density Power density
下载PDF
Preparation and Supercapacitive Properties of Fe_2O_3/Active Carbon Nanocomposites 被引量:1
7
作者 LUO Pei-wen YU Jian-guo +5 位作者 SHI Zhi-qiang HUANG Hua LIU Lang ZHAO Yong-nan LI Guo-dong ZOU Yong-cun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第5期780-783,共4页
Fe2O3/active carbon(Fe2O3/AC) nanocomposites were readily fabricated by pyrolyzing Fe3+ impregnated active carbon in a nitrogen atmosphere. The as-prepared composites were studied by X-ray powder diffraction(XRD)... Fe2O3/active carbon(Fe2O3/AC) nanocomposites were readily fabricated by pyrolyzing Fe3+ impregnated active carbon in a nitrogen atmosphere. The as-prepared composites were studied by X-ray powder diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). The capacitive property of the composites was investigated by cyclic voltammetry(CV) and galvanostatic charge-discharge test. Physical characterizations show that the γ-Fe2O3 fine grains dispersed in the AC well, with a mean size of 21.24 nm. Electrochemical tests in 6 mol/L KOH solutions indicate that the as-prepared nanocomposites exhibited improved capacitive properties. The specific capacitance(SC) of Fe2O3/AC nanocomposites was up to 188.4 F/g that was derived from both electrochemical double-layer capacitance and pseudo-capacitance, which was 78% larger than that of pristine AC. A symmetric capacitor with Fe2O3/AC nanocomposites as electrode showed an excellent cycling stability. The SC was only reduced by a factor of 9.2% after 2000 cycles at a current density of 1 A/g. 展开更多
关键词 Nanocomposite Fe2O3 Active carbon Supercapacitor
下载PDF
The roles of graphene in advanced Li-ion hybrid supercapacitors 被引量:2
8
作者 Junwei Lang Xu Zhang +3 位作者 Bao Liu RutaoWang Jiangtao Chen Xingbin Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期43-56,共14页
Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density o... Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density of Li-ion battery. However, high power density and long cycle life are still challenges for the cul~ rent LIHSs due to the imbalance of charge-storage capacity and electrode kinetics between capacitor-type cathode and battery-type anode. Therefore, great efforts have been made on designing novel cathode materials with high storage capacity and anode material with enhanced kinetic behavior for LIHSs. With unique two-dimensional form and numerous appealing properties, for the past several years, the rational designed graphene and its composites materials exhibit greatly improved electrochemical performance as cathode or anode for LIHSs. Here, we summarized and discussed the latest advances of the state- of-art graphene-based materials for LIHSs applications. The major roles of graphene are highlighted as (1) a superior active material, (2) ultrathin 2D flexible support to remedy the sluggish reaction of the metal compound anode, and (3) good 2D building blocks for constructing macroscopic 3D pOFOUS car- bonjgraphene hybrids. In addition, some high performance aqueous LIHSs using graphene as electrode were also summarized. Finally, the perspectives and challenges are also proposed for further develop- ment of more advanced graphene-based LIHSs. 展开更多
关键词 Graphene Li-ion hybrid supercapacitors Supercapacitor Lithium ion batteries carbon materials Metal oxide Naoocomposites
下载PDF
Microbe-derived carbon materials for electrical energy storage and conversion
9
作者 Li Wei H.Enis Karahan +5 位作者 Shengli Zhai Yang Yuan Qihui Qian Kunli Goh Andrew Keong Ng Yuan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期189-196,共8页
Microbes are microscopic living organisms that surround us which include bacteria, archaea, most protozoa, and some fungi and algae. In recent years, microbes have been explored as novel precursors to synthesize carbo... Microbes are microscopic living organisms that surround us which include bacteria, archaea, most protozoa, and some fungi and algae. In recent years, microbes have been explored as novel precursors to synthesize carbon-based(nano)materials and as substrates or templates to produce carbon-containing(nano)composites. Being greener and more affordable, microbe-derived carbons(MDCs) offer good potential for energy applications. In this review, we describe the unique advantages of MDCs and outline the common procedures to prepare them. We also extensively discuss the energy applications of MDCs including their use as electrodes in supercapacitors and lithium-ion batteries, and as electrocatalysts for processes such as oxygen reduction, oxygen evolution, and hydrogen evolution reactions which are essential for fuel cell and water electrochemical splitting cells. Based on the literature trend and our group's expertise, we propose potential research directions for developing new types of MDCs. This review, therefore, provides the state-of-the-art of a new energy chemistry concept. We expect to stimulate future research on the applications of MDCs that may address energy and environmental challenges that our societies are facing. 展开更多
关键词 Microbe carbon materials Supercapacitor Lithium-ion battery Oxygen reduction reaction Hydrogen evolution reaction
下载PDF
Flexible supercapacitors based on carbon nanotubes 被引量:4
10
作者 Lili Liu Zhiqiang Niu Jun Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第4期571-581,共11页
Since carbon nanotubes(CNTs) possess unique one dimensional(1D) structure, considerable attention has been paid to constructing CNTs into macroscopic materials with different dimensions, including 1D fibers,2D fil... Since carbon nanotubes(CNTs) possess unique one dimensional(1D) structure, considerable attention has been paid to constructing CNTs into macroscopic materials with different dimensions, including 1D fibers,2D films, and 3D foams. Such macroscopic CNT materials exhibit high conductivity, large surface area, as well as good mechanical properties, and thus can be directly used as the flexible supercapacitor(SC) electrodes or the scaffolds for supporting pseudo-capacitive electrode materials. Based on these macroscopic CNT electrodes, diverse SCs with different structures, including flexible, stretchable and/or compressible fiber and thin film SCs, have been designed. This review provides an overview of recent progress towards the development of flexible SCs based on macroscopic CNTs-based electrodes, with a focus on electrode preparation and configuration design as well as their integration with other multifunctional devices.Future development and prospects in the CNTs-based flexible SCs are also discussed. 展开更多
关键词 carbon nanotubes Flexible supercapacitors Macroscopic materials Pseudo-capacitive materials Integration
原文传递
Bismuth oxide nanoflake@carbon film: A free-standing battery-type electrode for aqueous sodium ion hybrid supercapacitors 被引量:2
11
作者 Zhenshuai Zhao Yihua Ye +3 位作者 Weihua Zhu Liang Xiao Bohua Deng Jinping Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第4期629-632,共4页
Aqueous hybrid supercapacitors are promising due to their low cost and high safety. Herein, a freestanding battery-type electrode of Bi2O3 nanoflake@C on carbon cloth is designed for aqueous sodium ion hybrid supercap... Aqueous hybrid supercapacitors are promising due to their low cost and high safety. Herein, a freestanding battery-type electrode of Bi2O3 nanoflake@C on carbon cloth is designed for aqueous sodium ion hybrid supercapacitors. Due to the integration of nanoarray architecture and the conductive carbon,the Bi2O3@C electrode exhibits a high specific capacity of 207 mAh/g at 2 A/g(6C), good rate capability and cycling stability(133 m Ah/g after 1000 cycles). With the activated carbon as the capacitive electrode and neutral sodium salts as the electrolyte, a 1.9 V hybrid supercapacitor is assembled,delivering a high energy density of 18.94 Wh/kg. The device can still maintain 72.3% of initial capacity after 650 cycles. The present work holds great promise for developing next-generation hybrid supercapacitors. 展开更多
关键词 Bi2O3 film Free-standing carbon hybridization Hybrid supercapacitors
原文传递
Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors 被引量:3
12
作者 Fei Sun Haobin Wu +4 位作者 Xin Liu Fang Liu Huihui zhou Jihui Gao Yunfeng Lu 《Nano Research》 SCIE EI CAS CSCD 2016年第11期3209-3221,共13页
Supercapacitors have high power densities, high efficiencies, and long cycling lifetimes; however, to enable their wider use, their energy densities must be significantly improved. The design and synthesis of improved... Supercapacitors have high power densities, high efficiencies, and long cycling lifetimes; however, to enable their wider use, their energy densities must be significantly improved. The design and synthesis of improved carbon materials with better capacitance, rate performance, and cycling stability has emerged as the main theme of supercapacitor research. Herein, we report a facile synthetic method to prepare nitrogen-rich carbon particles based on a continuous aerosol- spraying process. The method yields particles that have high surface areas, a uniform microporous structure, and are highly N-doped, resulting in a synergism that enables the construction of supercapacitors with high energy and power density for use in both aqueous and commercial organic electrolytes. Furthermore, we have used density functional theory calculations to show that the improved performance is due to the enhanced wettability and ion adsorption interactions at the carbon/electrolyte interface that result from nitrogen doping. These findings provide new insights into the role of heteroatom doping in the capacitance enhancement of carbon materials; in addition, our method offers an efficient route for large-scale production of doped carbon. 展开更多
关键词 nitrogen doping carbon spheres scalable supercapacitors density functional theory(DFT)
原文传递
Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors 被引量:7
13
作者 Yanjuan Yang Liang He +7 位作者 Chunjuan Tang Ping Hu Xufeng Hong Mengyu Yan Yixiao Dong Xiaocong Tian Qiulong Wei Liqiang Mai 《Nano Research》 SCIE EI CAS CSCD 2016年第8期2510-2519,共10页
In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyroly... In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon- based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF.cm-2) and energy density (4.5 mWh.cm-3) at a scan rate of 10 mV.s-L Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors. 展开更多
关键词 photolithography supercapacitors pyrolysis microelectromechanicalsystem (MEMS) carbon nanotubes
原文传递
High-performance organic electrolyte supercapacitors based on intrinsically powdery carbon aerogels 被引量:1
14
作者 Xidong Lin He Lou +3 位作者 Wenrui Lu Fei Xu Ruowen Fu Dingcai Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第4期633-636,共4页
A novel class of powdery carbon aerogels(PCAs) has been developed by the union of microemulsion polymerization and hypercrosslinking, followed by carbonization. The resulting aerogels are in a microscale powdery for... A novel class of powdery carbon aerogels(PCAs) has been developed by the union of microemulsion polymerization and hypercrosslinking, followed by carbonization. The resulting aerogels are in a microscale powdery form, demonstrate a well-defined 3D interconnected nanonetwork with hierarchical pores derived from numerous interstitial nanopores and intraparticle micropores, and exhibit high surface area(up to 1969 m^2/g). Benefiting from these structural features, PCAs show impressive capacitive performances when utilized as electrodes for organic electrolyte supercapacitors,including large capacitances of up to 152 F/g, high energy densities of 37-15 Wh/kg at power densities of 34–6750 W/kg, and robust cycling stability. 展开更多
关键词 Powdery carbon aerogel High surface area Hierarchical pore Organic electrolyte Supercapacitor
原文传递
Double-activated porous carbons for high-performance supercapacitor electrodes 被引量:6
15
作者 Jing Sun Shu-Hua Yang +1 位作者 Shan-Shan Li Bing-Qiang Cao 《Rare Metals》 SCIE EI CAS CSCD 2017年第5期449-456,共8页
The double-activated porous carbons(DAPCs)with unique bimodal pore structure were prepared by activating commercial microporous carbon(CMCs) twice through KOH(double activation) at high temperature. The as-prepa... The double-activated porous carbons(DAPCs)with unique bimodal pore structure were prepared by activating commercial microporous carbon(CMCs) twice through KOH(double activation) at high temperature. The as-prepared DAPCs show larger surface area(833 m^2·g^-1),and the pores are composed of micropores(size of-1.8 nm) and mesopores(size of -4.5 nm). Such special hierarchical porous structures integrate the dual advantages of micropore and mesopore, having not only the high energy storage of the micropores but also the high-rate performance of the mesopores for supercapacitors(SCs).As a result, the optimized DAPCs-3-1 exhibits a high specific capacitance of 277 F·g^-1 at 1 A·g^-1, enhanced rate performance of 197 F·g^-1 at a high current density of 10 A·g^-1, and excellent cycling stability with 94.2% capacity retention after 10,000 cycles in the 1 mol·L^-1 Na2SO4 electrolyte. The facile double activation could be a promising method to prepare suitable porous carbons with exceptional electrochemical properties for SCs. 展开更多
关键词 Double activation Activated carbon Hierarchically porous carbons Supercapacitor
原文传递
Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications 被引量:8
16
作者 Mingjiang Xie Zhicheng Xu +6 位作者 Shuyi Duan Zhengfang Tian Yu Zhang Kun xiang Ming Lin Xuefeng Guo Weiping Ding 《Nano Research》 SCIE EI CAS CSCD 2018年第1期216-224,共9页
The growth of a Ni(OH)2 coating on conductive carbon substrates is an efficient way to address issues related to their poor conductivity in electrochemical capacitor applications. However, the direct growth of nicke... The growth of a Ni(OH)2 coating on conductive carbon substrates is an efficient way to address issues related to their poor conductivity in electrochemical capacitor applications. However, the direct growth of nickel hydroxide coatings on a carbon substrate is challenging, because the surfaces of these systems are not compatible and a preoxidation treatment of the conductive carbon substrate is usually required. Herein, we present a facile preoxidation-free approach to fabricate a uniform Ni(OH)2 coating on carbon nanosheets (CNs) by an ion-exchange reaction to achieve the in situ transformation of a MgO/C composite to a Ni(OH)2/C one. The obtained Ni(OH)2/CNs hybrids possess nanosheet morphology, a large surface area (278 m2/g), and homogeneous elemental distributions. When employed as supercapacitors in a three-electrode configuration, the Ni(OH)JCNs hybrid achieves a large capacitance of 2,218 F/g at a current density of 1.0 A/g. Moreover, asymmetric supercapacitors fabricated with the Ni(OH)2/CNs hybrid exhibit superior supercapacitive performances, with a large capacity of 198 F/g, and high energy density of 56.7 Wh/kg at a power density of 4.0 kW/kg. They show excellent cycling stability with 93% capacity retention after 10,000 cycles, making the Ni(OH)2/CNs hybrid a promising candidate for practical applications in supercapacitor devices. 展开更多
关键词 in situ growth ion-exchange reaction hybrid Ni(OH)2 carbon nanosheet supercapacitor
原文传递
Nitrogen-doped graphene/carbon nanohorns composite as a high-performance supercapacitor electrode 被引量:3
17
作者 Xiao-Qiang Lin Wen-Dong Wang +3 位作者 Qiu-Feng Lu Yan-Qiao Jin Qilang Lin Rui Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第11期1339-1345,共7页
Nitrogen-doped graphene/carbon nanohorns composite(NGLC) was prepared by one-step co-pyrolysis of graphene oxide, carbon nanohorns(CNHs), urea, and lignosulfonate. CNHs as spacers were inserted into graphene nanos... Nitrogen-doped graphene/carbon nanohorns composite(NGLC) was prepared by one-step co-pyrolysis of graphene oxide, carbon nanohorns(CNHs), urea, and lignosulfonate. CNHs as spacers were inserted into graphene nanosheets. The introduction of CNHs and the loosened nano-structure of NGLC make it achieve a high specific capacitance of 363 Fg^(-1) at a discharge current density of 1 A g^(-1), and NGLC exhibits an ultrahigh stability of 93.5% capacitance retention ratio after 5000 cycles. The outstanding comprehensive electrochemical performance of NGLC could meet the need of the future acted as an efficient supercapacitor electrode material. 展开更多
关键词 Nitrogen-doped graphene carbon nanohorns Spacer Supercapacitor High-performance
原文传递
Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber 被引量:6
18
作者 Huimin Wang Chunya Wang +6 位作者 Muqiang Jian Qi Wang Kailun Xia Zhe Yin Mingchao Zhang Xiaoping Liang Yingying Zhang 《Nano Research》 SCIE EI CAS CSCD 2018年第5期2347-2356,共10页
Stretchable and flexible supercapacitors are highly desired due to their many potential applications in wearable devices. However, it is challenging to fabricate supercapacitors that can withstand large tensile strain... Stretchable and flexible supercapacitors are highly desired due to their many potential applications in wearable devices. However, it is challenging to fabricate supercapacitors that can withstand large tensile strain while maintaining high performance. Herein, we report an ultra-stretchable wire-shaped supercapacitor based on carbon nanotube@graphene@MnO2 fibers wound around a superelastic core fiber. The supercapacitor can sustain tensile strain up to 850%, which is the highest value reported for this type of device to date, while maintaining stable electrochemical performance. The energy density of the supercapacitor is 3.37 mWh·cm^-3 at a power density of 54.0 mW·cm^-3. The results show that 82% of the specific capacitance is retained after 1,000 stretch-release cycles with strains of 700%, demonstrating the superior durability of the elastic supercapacitor and showcasing its potential application in ultra-stretchable flexible electronics. 展开更多
关键词 ultra-stretchable supercapacitor carbon nanotube fiber helix structure flexible energy device bionic
原文传递
Zinc tartrate oriented hydrothermal synthesis of microporous carbons for high performance supercapacitor electrodes 被引量:2
19
作者 Ming-Xian Liu Ling-Yan Chen +5 位作者 Da-Zhang Zhu Hui Duan Wei Xiong Zi-Jie Xu Li-Hua Gan Long-Wu Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第3期399-404,共6页
A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc–organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks ... A novel zinc tartrate oriented hydrothermal synthesis of microporous carbons was reported. Zinc–organic complex obtained via a simple chelation reaction of zinc ions and tartaric acid is introduced into the networks of resorcinol/formaldehyde polymer under hydrothermal condition. After carbonization process, the resultant microporous carbons achieve high surface area(up to 1255 m^2/g) and large mean pore size(1.99 nm) which guarantee both high specific capacitance(225 F/g at 1.0 A/g) and fast charge/discharge operation(20 A/g) when used as a supercapacitor electrode. Besides, the carbon electrode shows good cycling stability, with 93% capacitance retention at 1.0 A/g after 1000 cycles. The welldesigned and high-performance microporous carbons provide important prospects for supercapacitor applications. 展开更多
关键词 Zinc tartrate Hydrothermal synthesis Microporous carbon Supercapacitor Electrode
原文传递
Facile synthesis of nitrogen-doped graphene aerogels functionalized with chitosan for supercapacitors with excellent electrochemical performance 被引量:2
20
作者 Yong Zhang Jia-Yi Zhu +2 位作者 Hong-Bo Ren Yu-Tie Bi Lin Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第5期935-942,共8页
Three-dimensional porous nitrogen-doped graphene aerogels(NGAs) were synthesized by using graphene oxide(GO) and chitosan via a self-assembly process by a rapid method.The morphology and structure of the as-prepar... Three-dimensional porous nitrogen-doped graphene aerogels(NGAs) were synthesized by using graphene oxide(GO) and chitosan via a self-assembly process by a rapid method.The morphology and structure of the as-prepared aerogels were characterized.The results showed that NGAs possesed the hierarchical pores with the wide size distribution ranging from mesopores to macropores.The NGAs carbonized at different temperature all showed excellent electrochemical performance in 6 mol/L KOH electrolyte and the electrochemical performance of the NGA-900 was the best.When working as a supercapacitor electrode,NGA-900 exhibited a high specific capacitance(244.4 F/g at a current density of 0.2 A/g),superior rate capability(51.0% capacity retention) and excellent cycling life(96.2% capacitance retained after 5000 cycles). 展开更多
关键词 Nitrogen-doped graphene aerogels Hierarchical porous structure carbonizing temperature supercapacitors Energy storage and conversion
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部