The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was inve...The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was investigated by an artificial intelligence approach called Random Forests using D10,D50,D90,BET specific surface area and TP density as inputs,initial efficiency as output.The results give good classification performance with 91%accuracy.The variable importance analysis results show the impact of 5 variables on the initial efficiency descends in the order of D90,TP density,BET specific surface area,D50 and D10;smaller D90 and larger TP density have positive impact on initial efficiency.The contribution of BET specific surface area on classification is only 18.74%,which indicates the shortcoming of BET specific surface area as a widely used parameter for initial efficiency evaluation.展开更多
MoS_2 nanosheet arrays supported on hierarchical nitrogen-doped porous carbon(MoS_2@C) have been synthesized by a facile hydrothermal approach combined with high-temperature calcination.The hierarchical nitrogen-dop...MoS_2 nanosheet arrays supported on hierarchical nitrogen-doped porous carbon(MoS_2@C) have been synthesized by a facile hydrothermal approach combined with high-temperature calcination.The hierarchical nitrogen-doped porous carbon can serve as three-dimensional conductive frameworks to improve the electronic transport of semiconducting MoS_2.When evaluated as anode material for lithium-ion batteries,the MoS_2@C exhibit enhanced electrochemical performances compared with pure MoS_2 nanosheets,including high capacity(1305.5 mAhg^(-1) at lOOmAg^(-1)),excellent rate capability(438.4mAhg^(-1) at 1000mAg^(-1)).The reasons for the improved electrochemical performances are explored in terms of the high electronic conductivity and the facilitation of lithium ion transport arising from the hierarchical structures of MoS_2@C.展开更多
基金Project(2001AA501433)supported by the National High-Tech Research and Development Program of China
文摘The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was investigated by an artificial intelligence approach called Random Forests using D10,D50,D90,BET specific surface area and TP density as inputs,initial efficiency as output.The results give good classification performance with 91%accuracy.The variable importance analysis results show the impact of 5 variables on the initial efficiency descends in the order of D90,TP density,BET specific surface area,D50 and D10;smaller D90 and larger TP density have positive impact on initial efficiency.The contribution of BET specific surface area on classification is only 18.74%,which indicates the shortcoming of BET specific surface area as a widely used parameter for initial efficiency evaluation.
基金supported by the National Natural Science Foundation of China(Nos.51272113,51272115,51672146)A Project of Shandong Province Higher Educational Science and Technology Program(Nos.J13LA10,J14LA15,J15LA12)Development Program in Science and Technology of Qingdao(No.15-9-1-65-jch)
文摘MoS_2 nanosheet arrays supported on hierarchical nitrogen-doped porous carbon(MoS_2@C) have been synthesized by a facile hydrothermal approach combined with high-temperature calcination.The hierarchical nitrogen-doped porous carbon can serve as three-dimensional conductive frameworks to improve the electronic transport of semiconducting MoS_2.When evaluated as anode material for lithium-ion batteries,the MoS_2@C exhibit enhanced electrochemical performances compared with pure MoS_2 nanosheets,including high capacity(1305.5 mAhg^(-1) at lOOmAg^(-1)),excellent rate capability(438.4mAhg^(-1) at 1000mAg^(-1)).The reasons for the improved electrochemical performances are explored in terms of the high electronic conductivity and the facilitation of lithium ion transport arising from the hierarchical structures of MoS_2@C.