The invasions of the alien species such as Spartina alterniflora along the northern Jiangsu coastlines have posed a threat to biodiversity and the ecosystem function.Yet,limited attention has been given to their poten...The invasions of the alien species such as Spartina alterniflora along the northern Jiangsu coastlines have posed a threat to biodiversity and the ecosystem function.Yet,limited attention has been given to their potential influence on greenhouse gas(GHG) emissions,including the diurnal variations of GHG fluxes that are fundamental in estimating the carbon and nitrogen budget.In this study,we examined the diurnal variation in fluxes of carbon dioxide(CO_2),methane(CH_4),and nitrous oxide(N2O) from a S.alterniflora intertidal flat in June,October,and December of 2013 and April of 2014 representing the summer,autumn,winter,and spring seasons,respectively.We found that the average CH_4 fluxes on the diurnal scale were positive during the growing season while negative otherwise.The tidal flat of S.alterniflora acted as a source of CH_4 in summer(June) and a combination of source and sink in other seasons.We observed higher diurnal variations in the CO_2 and N_2O fluxes during the growing season(1 536.5 mg CO_2 m^(–2) h^(–1) and 25.6 μg N_2O m^(–2) h^(–1)) compared with those measured in the non-growing season(379.1 mg CO_2 m^(–2) h^(–1) and 16.5 μg N_2O m^(–2) h^(–1)).The mean fluxes of CH_4 were higher at night than that in the daytime during all the seasons but October.The diurnal variation in the fluxes of CO_2 in June and N_2O in December fluctuated more than that in October and April.However,two peak curves in October and April were observed for the diurnal changes in CO_2 and N_2O fluxes(prominent peaks were found in the morning of October and in the afternoon of April,respectively).The highest diurnal variation in the N_2O fluxes took place at 15:00(86.4 μg N_2O m^(–2) h^(–1)) in June with an unimodal distribution.Water logging in October increased the emission of CO_2(especially at nighttime),yet decreased N_2O and CH_4 emissions to a different degree on the daily scale because of the restrained diffusion rates of the gases.The seasonal and diurnal variations of CH_4 and CO_2 fluxes did not correlate to the air and soil temperatures,whereas the seasonal and diurnal variation of the fluxes of N_2O in June exhibited a significant correlation with air temperature.When N_2O and CH_4 fluxes were converted to CO_2-e equivalents,the emissions of N_2O had a remarkable potential to impact the global warming.The mean daily flux(MF) and total daily flux(TDF) were higher in the growing season,nevertheless,the MF and TDF of CO_2 were higher in October and those of CH_4 and N_2O were higher in June.In spite of the difference in the optimal sampling times throughout the observation period,our results obtained have implications for sampling and scaling strategies in estimating the GHG fluxes in coastal saline wetlands.展开更多
Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse ga...Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse gases. Therefore, we set up an irrigation experiment with one watered (W) and one unwatered plot (UW) at a winter-grazed Leymus chinensis-steppe site in the Xilin River catchment, Inner Mongolia. UW only received the natural precipitation of 2005 (129 mm), whereas W was additionally watered after the precipitation data of 1998 (in total 427 mm). In the 3-hour resolution, we determined nitrous oxide (N20), methane (CH4) and carbon dioxide (CO2) fluxes at both plots between May and September 2005, using a fully automated, chamber-based measuring system. N20 fluxes in the steppe were very low, with mean emissions (±s.e.) of 0.9-4-0.5 and 0.7-4-0.5 μg N m^-2 h^-1 at W and UW, respectively. The steppe soil always served as a CH4 sink, with mean fluxes of -24.1-4-3.9 and -31.1-4- 5.3 μg C m^-2 h^-1 at W and UW. Nighttime mean CO2 emissions were 82.6±8.7 and 26.3±1.7 mg C m^-2 h^-1 at W and UW, respectively, coinciding with an almost doubled aboveground plant biomass at W. Our results indicate that the ecosystem CO2 respiration responded sensitively to increased water input during the vegetation period, whereas the effects on CH4 and N2O fluxes were weak, most likely due to the high evapotranspiration and the lack of substrate for N2O producing processes. Based on our results, we hypothesize that with the gradual increase of summertime precipitation in Inner Mongolia, ecosystem CO2 respiration will be enhanced and CH4 uptake by the steppe soils will be lightly inhibited.展开更多
In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. T...In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.展开更多
The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based so...The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobility and oxygen vacancies in the CeO2 catalyst. Raman and Fourier Transform Infra Red (FT-IR) spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks corresponding to the bulk crystalline structures of Li2O, CaO, WO3 and MnO are detected. The performance of 5%MnO/15%CaO/CeO2 catalyst is the most potential among the CeO2-based catalysts, although lower than the 2%Li2O/MgO catalyst. The 2%Li2O/MgO catalyst showed the most promising C2+ hydrocarbons selectivity and yield at 98.0% and 5.7%, respectively.展开更多
The reuse of treated wastewater in agricultural systems could partially help alleviate water resource shortages in developing countries. Treated wastewater differs from fresh water in that it has higher concentrations...The reuse of treated wastewater in agricultural systems could partially help alleviate water resource shortages in developing countries. Treated wastewater differs from fresh water in that it has higher concentrations of salts, Escherichia coli and presence of dissolved organic matter, and inorganic N after secondary treatment, among others. Its application could thus cause environmental consequences such as soil salinization, ammonia volatilization, and greenhouse gas emissions. In an incubation experiment, we evaluated the characteristics and effects of water-filled pore space (WFPS) and N input on the emissions of nitrous oxide (N2O) and carbon dioxide (CO2) from silt loam soil receiving treated wastewater. Irrigation with treated wastewater (vs. distilled water) significantly increased cumulative N2O emission in soil (117.97 μg N kg-1). Cumulative N2O emissions showed an exponentially increase with the increasing WFPS in unamended soil, but the maximum occurred in the added urea soil incubated at 60% WFPS. N2O emissions caused by irrigation with treated wastewater combined with urea-N fertilization did not simply add linearly, but significant interaction (P〈0.05) caused lower emissions than the production of N2O from the cumulative effects of treated wastewater and fertilizer N. Moreover, a significant impact on cumulative CO2 emission was measured in soil irrigated with treated wastewater. When treated wastewater was applied, there was significant interaction between WFPS and N input on N2O emission. Hence, our results indicated that irrigation with treated wastewater should cause great concern for increasing global warming potential due to enhanced emission of N2O and CO2.展开更多
Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the s...Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.展开更多
CeO2/ZnO nanocatalysts were prepared from the coupling route of homogeneous precipita-tion with microemulsion and the impregnation method. The catalytic performance of these two kinds of catalysts on the oxidative cou...CeO2/ZnO nanocatalysts were prepared from the coupling route of homogeneous precipita-tion with microemulsion and the impregnation method. The catalytic performance of these two kinds of catalysts on the oxidative coupling of methane with carbon dioxide was tested and compared; the frac-tal behavior of the nanocatalysts was analyzed using fractal theory. The CeO2/ZnO nanocatalysts had much higher activity than the catalysts prepared by impregnation method. There was no regular relation-ship between the average size of CeO2/ZnO nanocatalysts and their catalytic performance; however, the conversion of methane increased with the increase of the fractal dimension of CeO2/ZnO nanocatalysts.展开更多
Little information is available for Central America regarding methane and carbon dioxide mixing ratios in urban areas. This work reports a representative spatial and seasonal study of near surface carbon dioxide and m...Little information is available for Central America regarding methane and carbon dioxide mixing ratios in urban areas. This work reports a representative spatial and seasonal study of near surface carbon dioxide and methane, carried out between July 2014 and January 2015 (27 weeks) in the Central Valley of Costa Rica, and other urban and rural sites across the country and covering three distinct seasons: Mid-summer drought (July-August), wet season (September-November) and transition period (December-January). The mixing ratios of both gases are clearly influenced by the metropolitan area, and by the prevailing atmospheric conditions during the wet season months. Average carbon dioxide concentration (629 ± 80 ppm) and average methane concentration (2192 ± 110 ppb) were up to 8% and up to 10%, respectively, higher during the wet season than the values recorded outside this period. HYSPLIT back air mass trajectories analysis, and weather data available for the Central Valley, suggest that these differences arise as result of a reduction in the mixing layer of depth (~425 m) and the wind speed (~1.5 m/s) across the valley, favoring the accumulation of polluted air masses in the metropolitan area. Other natural and anthropogenic sources, like the volcanic emissions of the Turrialba Volcano and the livestock activities at rural sites, apparently influence the mixing ratios of both gases across Costa Rica. Although the scope of this study is limited to representative seasonal conditions of the Central Valley in 2014 and 2015, it is possible considering the information presented in this work that the “dome” phenomenon can be assumed to exist.展开更多
This study was carried out in paddy fields to explore how organic manure applications would affect greenhouse emissions in South China. The results showed that the seasonal emission of CH4 under the chemical fertiliz...This study was carried out in paddy fields to explore how organic manure applications would affect greenhouse emissions in South China. The results showed that the seasonal emission of CH4 under the chemical fertilizer (CF) treatment was 271.47 kg/hm^2. In comparison, the seasonal emissions of CH4 under the treatment of pig manure (PM), chicken manure (CM) and rice straw (RS) increased by 50.61,260.22 and 602.82 kg/hm^2, respectively. N2O emission under the CF treatment was 1.22 kg/hm^2, while the N20 seasonal emissions under tile PM, CM and RS treatment decreased by 23.6% (P〈0.05), 31.7% (P〈0.05) and 30.9% (P〈0.05), respectively. Meanwhile, the readily oxidized organic carbon (which was oxidized by 167 mmol/L potassium permanganate, ROC167) of manure, paddy soil Eh value and temperature could also affect the CH4 emissions. The average yield of the organic fertilizer treatments increased by 6.8% compared with that of the CF treatment. Among all the organic fertilizer treatments, the PM treatment offered the lowest global warming potential and greenhouse gas intensity, in which the PM was of no significant difference from NF (no fertilizing) and CF. Therefore, the pig manure is capable of coordinating the relationship between environment and yield, and it also has a low ROC167 content, so the PM is considered worthy of recommendation.展开更多
In order to investigate the CH4 and CO2 fluxes across the water-gas interface and identify their controlling factors, four diel field campaigns and one monthly sampling campaign during June 2010-May 2011 were carried ...In order to investigate the CH4 and CO2 fluxes across the water-gas interface and identify their controlling factors, four diel field campaigns and one monthly sampling campaign during June 2010-May 2011 were carried out at a site near the Three Gorges Dam, China. The averaged CH4 and CO2 fluxes across the air-water interface from the site were much less than those reported from reservoirs in tropic and temperate regions, and from the natural river channels of the Yangtze River. CH4 Fluxes at the site were very low compared to most other reservoirs or natural lakes. One of the most important reasons may be due to the oxidation of CH4 in the water column owing to the great water depth and high DO in water in the Three Gorges Reservoir. The averaged monthly CH4 and CO2 fluxes at the site during the observation year were 0.05 mg/(m^2·hr) and 104.43 mg/(m^2·hr) respectively with the maximum occurred in July 2010. The monthly CO2 fluxes during the observation year were positively correlated to the surface water temperature, and negatively correlated to the air pressure and the surface water pH. The CO2 flux showed a positive correlation with DOC to some extent, although not significantly, which indicated that allochthonous organic C was a major source of CO2 and biogeochemical processes in this reservoir were C-limited. The significantly positive correlation between the reservoir outflow and the seasonal gas flux indicate the disturbance condition of the water body dominated the seasonal gas emission.展开更多
In the past few decades there has been a remarkable rise in the study of visible-light photocatalytic reduction of carbon dioxide (CO_(2)) into value-added chemicals such as methane (CH4) with water as reducing agent ...In the past few decades there has been a remarkable rise in the study of visible-light photocatalytic reduction of carbon dioxide (CO_(2)) into value-added chemicals such as methane (CH4) with water as reducing agent in order to prevent global warming and energy crisis. However, so far the conversion efficiency leaves much to be enhanced under sunlight irradiation. In this work, Cu_(2)O hollow nanospheres were synthesized via soft-template method and were combined with TiO_(2) through in-situ hydrolysis of Ti(OBu)4 under sonication. The obtained photocatalysts of Cu_(2)O and Cu_(2)O/TiO_(2) composite were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, UV-visible diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Compared to Cu_(2)O hollow nanospheres, the Cu_(2)O/TiO_(2) composite exhibited higher efficiency in photocatalytic reduction of CO_(2) into CH4 under visible-light irradiation (λ≥420 nm). This is because of the formation of a p-n heterojunction in the composites, resulting in efficient suppression of recombina- tion of the photogenerated electrons and holes as well as an improved stability of the catalyst and, thereby, the im- proved visible-light photocatalytic activity.展开更多
The 7 wt%rare earth metal oxide promoted Ni-SiO_(2) catalysts of Ni-7Pr_(6)O_(11)-SiO_(2),Ni-7Nd_(2)O_(3)-SiO_(2),and Ni-7Sm_(2)O_(3)-SiO_(2) were prepared by the complex-decomposition method,and were comparatively ev...The 7 wt%rare earth metal oxide promoted Ni-SiO_(2) catalysts of Ni-7Pr_(6)O_(11)-SiO_(2),Ni-7Nd_(2)O_(3)-SiO_(2),and Ni-7Sm_(2)O_(3)-SiO_(2) were prepared by the complex-decomposition method,and were comparatively evaluated for pressurized carbon dioxide reforming of methane(CRM)under severe conditions of 750℃,1.0 MPa,CH_(4)/CO_(2)=1,and gas hourly space velocity of 53200 mL/(g·h).The addition of rare earth metal oxide does not affect the Ni dispersion,and all of the catalysts show similarly high Ni dispersion of16.0%±0.2%.As a result,all of the catalysts are highly active for pressurized CRM,the initial CH_(4) conversions of which approach the thermodynamic equilibrium(47.0%±0.2%).In contrast,a clearly favorable effect of the added rare earth metal oxide on the stability of Ni-SiO_(2)was revealed from the CRM results for a time-on-stream of 50 h,and the highest stability without an observable decrease in the conversions of CH_(4)and CO_(2)was obtained over Ni-7Sm_(2)O_(3)-SiO_(2).Based on the characterization results of thermogravimetric differential scanning calorimetry(TG-DSC)and transmission electron microscopy(TEM),the improved stability of Ni-7Pr_(6)O_(11)-SiO_(2),Ni-7Nd_(2)O_(3)-SiO_(2),and Ni-7Sm_(2)O_(3)-SiO_(2)for pressurized CRM was manifested mainly as the suppressed formation of carbon nanotubes over the catalyst surface,the extent of which is dependent on the specific rare earth metal oxide.Moreover,the consecutive temperature programmed surface reaction of CH_(4),CO_(2),and O_(2)over Ni-7Sm_(2)O_(3)-SiO_(2)vigorously reveals that the addition of Sm_(2)O_(3)into Ni-SiO_(2)inhibits the CH_(4)decomposition but enhances the oxidization of the carbon species by CO_(2),leading to the well-balanced rates for forming and removing the coke over Ni-7Sm_(2)O_(3)-SiO_(2).These findings are not only beneficial to deeply understanding the promotional effect of rare earth metal oxides on Ni-based catalysts for CRM,but also important for extending the application of the less studied rare earth metal oxides as promoters for the metalsupported catalysts.展开更多
Combination of partial oxidation of methane (POM) with carbon dioxide reforming of methane (CRM) has been studied over Ru-based catalysts at 550℃.POM,CRM and combined reaction were performed over 8wt%Ru/γ-Al2O 3...Combination of partial oxidation of methane (POM) with carbon dioxide reforming of methane (CRM) has been studied over Ru-based catalysts at 550℃.POM,CRM and combined reaction were performed over 8wt%Ru/γ-Al2O 3 and the results show that both POM and CRM contribute to the combined reaction,between which POM plays a more important role.Moreover,the addition of Ce to Ru-based catalyst results in an improvement in the activity and CO selectivity under the adopted reaction conditions.The Ce-doped catalyst was characterized by N2 adsorption-desorption,SEM,XRD,TPR,XPS and in situ DRIFTS.The mechanism has been studied by in situ DRIFTS together with the temperature distribution of catalyst bed.The mechanism of the combined reaction is more complicated and it is the combination of POM and CRM mechanisms in nature.The present paper provides a new catalytic system to activate CH4 and CO2 at a rather low temperature.展开更多
A new type of Ni/MgO catalyst was prepared using atmospheric high-frequency discharge cold plasma. The influences of conventional method, plasma method, and plasma plus calcination method on the catalytic activity wer...A new type of Ni/MgO catalyst was prepared using atmospheric high-frequency discharge cold plasma. The influences of conventional method, plasma method, and plasma plus calcination method on the catalytic activity were studied and the CO2 reforming of methane was chosen as the probe reaction. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy, and CO2 temperature-programmed surface reaction techniques. The results suggested that the nickel-based catalyst prepared by plasma plus calcination method possessed a smaller particle size and a higher dispersion of active component, better low-temperature activity and enhanced anti-coking ability. The conversion of CO2 and CH4 was 90.70% and 89.37%, respectively, and the reaction lasted for 36 h without obvious deactivation under 101.325 kPa and 750°C with CO2/CH4 = 1/1.展开更多
In this research,new catalyst with high industrial impact is developed,which can catalyze the conversion of CO2 to methane through methanation reaction.A series of catalysts based on nickel oxide were prepared using w...In this research,new catalyst with high industrial impact is developed,which can catalyze the conversion of CO2 to methane through methanation reaction.A series of catalysts based on nickel oxide were prepared using wetness impregnation technique and ageing,followed by calcination at 400℃.Rh/Ni(30:70)/Al2O3 catalyst was revealed as the most potential catalyst based on the results of catalytic activity measurement monitored by Fourier Transform Infrared Spectroscopy(FTIR)and Gas Chromatography(GC).The results showed 90.1%CO2 conversion and 70.8% yield at 400℃.展开更多
Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxid...Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxide(CO_(2)),methane(CH_(4))and nitrous oxide(N_(2)O).Understanding how SLR influences GHG emissions is critical for evaluating mangrove blue carbon capability.In this study,potential effects of SLR on the GHG emissions were quantified through static closed chamber technique among three sites under different intertidal elevations,representing tidal flooding situation of SLR values of 0 cm,40 cm and 80 cm,respectively.Compared with Site SLR 0 cm,annual CO_(2) and N_(2)O fluxes decreased by approximately 75.0%and 27.3%due to higher soil water content,lower salinity and soil nutrient environments at Site SLR 80 cm.However,CH_(4) fluxes increased by approximately 13.7%at Site SLR 40 cm and 8.8%at Site SLR 80 cm because of lower salinity,higher soil water content and soil pH.CO_(2)-equivalent fluxes were 396.61 g/(m^(2)·a),1423.29 g/(m^(2)·a)and 1420.21 g/(m^(2)·a)at Sites SLR 80 cm,SLR 40 cm and SLR 0 cm,respectively.From Site SLR 0 cm to Site SLR 80 cm,contribution rate of N_(2)O and CH_(4) increased by approximately 7.42%and 3.02%,while contribution rate of CO_(2) decreased by approximately 10.44%.The results indicated that warming potential of trace CH_(4) and N_(2)O was non-negligible with SLR.Potential effects of SLR on the mangrove blue carbon capability should warrant attention due to changes of all three greenhouse gas fluxes with SLR.展开更多
Using the observation data in Yongxing Island,South China Sea(SCS)from December 2013 to November 2018,the multiple time scales variation of atmospheric CO_(2)and CH_(4)were analyzed to understand their temporal variat...Using the observation data in Yongxing Island,South China Sea(SCS)from December 2013 to November 2018,the multiple time scales variation of atmospheric CO_(2)and CH_(4)were analyzed to understand their temporal variation characteristics and controlling factors.The regional-averaged background mole fractions of CO_(2)and CH_(4)both show a single-period sinusoidal variation with a lower value at noon and a higher value in the wee hours.In the seasonal scale,they exhibited a significant seasonal difference with higher values in winter and lower values in summer.In the annual scale,CO_(2)and CH_(4)both show an increasing trend,with an annual growth rate of approximately 3.2 ppm and 12 ppb,respectively.The annual growth rate at this site was higher than the global average.The change in atmospheric CO_(2)and CH_(4)in Yongxing Island was probably caused by the higher emission of the surrounding areas and the airflows driven by monsoon.Hopefully,the long-term and high-resolution greenhouse gases(GHGs)dataset will aid relevent researchers and decision-makers in performing more in-depth studies for GHG sources in order to derive effective strategies.展开更多
Chinese cabbage was cultivated in upland soil with the addition of biochar in order to investigate the potential for reduction of greenhouse gas emissions. Barley straw biochar(BSB) was introduced in a Wagner pot(1/50...Chinese cabbage was cultivated in upland soil with the addition of biochar in order to investigate the potential for reduction of greenhouse gas emissions. Barley straw biochar(BSB) was introduced in a Wagner pot(1/5000a) in amounts of 0(BSB0, control), 100(BSB100), 300(BSB300), and 500(BSB500) kg 10a^(-1). After the addition of BSB into the upland soil, carbon dioxide(CO_2) emission increased while methane(CH_4) and nitrous oxide(N_2O) emissions decreased. The highest CO2 flux was measured for the BSB500 sample,(84.6 g m^(-2)) followed by BSB300, BSB100, and BSB0 in decreasing order. Relative to those of control, the total CH_4 flux and N_2O flux for the BSB500 treatment were lower by 31.6% and 26.1%, respectively. The global warming potential(GWP) of the treatment without biochar was 281.4 g CO_2 m-2 and those for treatments with biochar were in the range from 194.1 to 224.9 g CO_2 m^(-2). Therefore, introducing BSB into upland soil to cultivate Chinese cabbages can reduce the global warming potential.展开更多
基金The National Basic Research Program of China under contract No.2013CB956503the State Oceanic Administration People’s Republic of China under contract No.201005006the National Natural Science Foundation of China under contract No.41471413
文摘The invasions of the alien species such as Spartina alterniflora along the northern Jiangsu coastlines have posed a threat to biodiversity and the ecosystem function.Yet,limited attention has been given to their potential influence on greenhouse gas(GHG) emissions,including the diurnal variations of GHG fluxes that are fundamental in estimating the carbon and nitrogen budget.In this study,we examined the diurnal variation in fluxes of carbon dioxide(CO_2),methane(CH_4),and nitrous oxide(N2O) from a S.alterniflora intertidal flat in June,October,and December of 2013 and April of 2014 representing the summer,autumn,winter,and spring seasons,respectively.We found that the average CH_4 fluxes on the diurnal scale were positive during the growing season while negative otherwise.The tidal flat of S.alterniflora acted as a source of CH_4 in summer(June) and a combination of source and sink in other seasons.We observed higher diurnal variations in the CO_2 and N_2O fluxes during the growing season(1 536.5 mg CO_2 m^(–2) h^(–1) and 25.6 μg N_2O m^(–2) h^(–1)) compared with those measured in the non-growing season(379.1 mg CO_2 m^(–2) h^(–1) and 16.5 μg N_2O m^(–2) h^(–1)).The mean fluxes of CH_4 were higher at night than that in the daytime during all the seasons but October.The diurnal variation in the fluxes of CO_2 in June and N_2O in December fluctuated more than that in October and April.However,two peak curves in October and April were observed for the diurnal changes in CO_2 and N_2O fluxes(prominent peaks were found in the morning of October and in the afternoon of April,respectively).The highest diurnal variation in the N_2O fluxes took place at 15:00(86.4 μg N_2O m^(–2) h^(–1)) in June with an unimodal distribution.Water logging in October increased the emission of CO_2(especially at nighttime),yet decreased N_2O and CH_4 emissions to a different degree on the daily scale because of the restrained diffusion rates of the gases.The seasonal and diurnal variations of CH_4 and CO_2 fluxes did not correlate to the air and soil temperatures,whereas the seasonal and diurnal variation of the fluxes of N_2O in June exhibited a significant correlation with air temperature.When N_2O and CH_4 fluxes were converted to CO_2-e equivalents,the emissions of N_2O had a remarkable potential to impact the global warming.The mean daily flux(MF) and total daily flux(TDF) were higher in the growing season,nevertheless,the MF and TDF of CO_2 were higher in October and those of CH_4 and N_2O were higher in June.In spite of the difference in the optimal sampling times throughout the observation period,our results obtained have implications for sampling and scaling strategies in estimating the GHG fluxes in coastal saline wetlands.
基金the German Research Foundation (DFG, Research UnitNo. 536, "Matter fluxes in grasslands of Inner Mongo-lia as influenced by stocking rate", MAGIM) (BU 1173/6-2)the National Natural Science Foundation of China(NSFC) (Grant Nos. 40425010, 40331014)
文摘Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse gases. Therefore, we set up an irrigation experiment with one watered (W) and one unwatered plot (UW) at a winter-grazed Leymus chinensis-steppe site in the Xilin River catchment, Inner Mongolia. UW only received the natural precipitation of 2005 (129 mm), whereas W was additionally watered after the precipitation data of 1998 (in total 427 mm). In the 3-hour resolution, we determined nitrous oxide (N20), methane (CH4) and carbon dioxide (CO2) fluxes at both plots between May and September 2005, using a fully automated, chamber-based measuring system. N20 fluxes in the steppe were very low, with mean emissions (±s.e.) of 0.9-4-0.5 and 0.7-4-0.5 μg N m^-2 h^-1 at W and UW, respectively. The steppe soil always served as a CH4 sink, with mean fluxes of -24.1-4-3.9 and -31.1-4- 5.3 μg C m^-2 h^-1 at W and UW. Nighttime mean CO2 emissions were 82.6±8.7 and 26.3±1.7 mg C m^-2 h^-1 at W and UW, respectively, coinciding with an almost doubled aboveground plant biomass at W. Our results indicate that the ecosystem CO2 respiration responded sensitively to increased water input during the vegetation period, whereas the effects on CH4 and N2O fluxes were weak, most likely due to the high evapotranspiration and the lack of substrate for N2O producing processes. Based on our results, we hypothesize that with the gradual increase of summertime precipitation in Inner Mongolia, ecosystem CO2 respiration will be enhanced and CH4 uptake by the steppe soils will be lightly inhibited.
基金supported by the South-Central University for Nationalities(CZZ12002)
文摘In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.
文摘The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobility and oxygen vacancies in the CeO2 catalyst. Raman and Fourier Transform Infra Red (FT-IR) spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks corresponding to the bulk crystalline structures of Li2O, CaO, WO3 and MnO are detected. The performance of 5%MnO/15%CaO/CeO2 catalyst is the most potential among the CeO2-based catalysts, although lower than the 2%Li2O/MgO catalyst. The 2%Li2O/MgO catalyst showed the most promising C2+ hydrocarbons selectivity and yield at 98.0% and 5.7%, respectively.
基金funded by the National Natural Science Foundation of China (50979107)
文摘The reuse of treated wastewater in agricultural systems could partially help alleviate water resource shortages in developing countries. Treated wastewater differs from fresh water in that it has higher concentrations of salts, Escherichia coli and presence of dissolved organic matter, and inorganic N after secondary treatment, among others. Its application could thus cause environmental consequences such as soil salinization, ammonia volatilization, and greenhouse gas emissions. In an incubation experiment, we evaluated the characteristics and effects of water-filled pore space (WFPS) and N input on the emissions of nitrous oxide (N2O) and carbon dioxide (CO2) from silt loam soil receiving treated wastewater. Irrigation with treated wastewater (vs. distilled water) significantly increased cumulative N2O emission in soil (117.97 μg N kg-1). Cumulative N2O emissions showed an exponentially increase with the increasing WFPS in unamended soil, but the maximum occurred in the added urea soil incubated at 60% WFPS. N2O emissions caused by irrigation with treated wastewater combined with urea-N fertilization did not simply add linearly, but significant interaction (P〈0.05) caused lower emissions than the production of N2O from the cumulative effects of treated wastewater and fertilizer N. Moreover, a significant impact on cumulative CO2 emission was measured in soil irrigated with treated wastewater. When treated wastewater was applied, there was significant interaction between WFPS and N input on N2O emission. Hence, our results indicated that irrigation with treated wastewater should cause great concern for increasing global warming potential due to enhanced emission of N2O and CO2.
文摘Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.
文摘CeO2/ZnO nanocatalysts were prepared from the coupling route of homogeneous precipita-tion with microemulsion and the impregnation method. The catalytic performance of these two kinds of catalysts on the oxidative coupling of methane with carbon dioxide was tested and compared; the frac-tal behavior of the nanocatalysts was analyzed using fractal theory. The CeO2/ZnO nanocatalysts had much higher activity than the catalysts prepared by impregnation method. There was no regular relation-ship between the average size of CeO2/ZnO nanocatalysts and their catalytic performance; however, the conversion of methane increased with the increase of the fractal dimension of CeO2/ZnO nanocatalysts.
文摘Little information is available for Central America regarding methane and carbon dioxide mixing ratios in urban areas. This work reports a representative spatial and seasonal study of near surface carbon dioxide and methane, carried out between July 2014 and January 2015 (27 weeks) in the Central Valley of Costa Rica, and other urban and rural sites across the country and covering three distinct seasons: Mid-summer drought (July-August), wet season (September-November) and transition period (December-January). The mixing ratios of both gases are clearly influenced by the metropolitan area, and by the prevailing atmospheric conditions during the wet season months. Average carbon dioxide concentration (629 ± 80 ppm) and average methane concentration (2192 ± 110 ppb) were up to 8% and up to 10%, respectively, higher during the wet season than the values recorded outside this period. HYSPLIT back air mass trajectories analysis, and weather data available for the Central Valley, suggest that these differences arise as result of a reduction in the mixing layer of depth (~425 m) and the wind speed (~1.5 m/s) across the valley, favoring the accumulation of polluted air masses in the metropolitan area. Other natural and anthropogenic sources, like the volcanic emissions of the Turrialba Volcano and the livestock activities at rural sites, apparently influence the mixing ratios of both gases across Costa Rica. Although the scope of this study is limited to representative seasonal conditions of the Central Valley in 2014 and 2015, it is possible considering the information presented in this work that the “dome” phenomenon can be assumed to exist.
文摘This study was carried out in paddy fields to explore how organic manure applications would affect greenhouse emissions in South China. The results showed that the seasonal emission of CH4 under the chemical fertilizer (CF) treatment was 271.47 kg/hm^2. In comparison, the seasonal emissions of CH4 under the treatment of pig manure (PM), chicken manure (CM) and rice straw (RS) increased by 50.61,260.22 and 602.82 kg/hm^2, respectively. N2O emission under the CF treatment was 1.22 kg/hm^2, while the N20 seasonal emissions under tile PM, CM and RS treatment decreased by 23.6% (P〈0.05), 31.7% (P〈0.05) and 30.9% (P〈0.05), respectively. Meanwhile, the readily oxidized organic carbon (which was oxidized by 167 mmol/L potassium permanganate, ROC167) of manure, paddy soil Eh value and temperature could also affect the CH4 emissions. The average yield of the organic fertilizer treatments increased by 6.8% compared with that of the CF treatment. Among all the organic fertilizer treatments, the PM treatment offered the lowest global warming potential and greenhouse gas intensity, in which the PM was of no significant difference from NF (no fertilizing) and CF. Therefore, the pig manure is capable of coordinating the relationship between environment and yield, and it also has a low ROC167 content, so the PM is considered worthy of recommendation.
基金supported by National Science Foundation of China (No.41273110,51079163)the National Basic Research Program (973) of China(No.2010CB955904)State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences
文摘In order to investigate the CH4 and CO2 fluxes across the water-gas interface and identify their controlling factors, four diel field campaigns and one monthly sampling campaign during June 2010-May 2011 were carried out at a site near the Three Gorges Dam, China. The averaged CH4 and CO2 fluxes across the air-water interface from the site were much less than those reported from reservoirs in tropic and temperate regions, and from the natural river channels of the Yangtze River. CH4 Fluxes at the site were very low compared to most other reservoirs or natural lakes. One of the most important reasons may be due to the oxidation of CH4 in the water column owing to the great water depth and high DO in water in the Three Gorges Reservoir. The averaged monthly CH4 and CO2 fluxes at the site during the observation year were 0.05 mg/(m^2·hr) and 104.43 mg/(m^2·hr) respectively with the maximum occurred in July 2010. The monthly CO2 fluxes during the observation year were positively correlated to the surface water temperature, and negatively correlated to the air pressure and the surface water pH. The CO2 flux showed a positive correlation with DOC to some extent, although not significantly, which indicated that allochthonous organic C was a major source of CO2 and biogeochemical processes in this reservoir were C-limited. The significantly positive correlation between the reservoir outflow and the seasonal gas flux indicate the disturbance condition of the water body dominated the seasonal gas emission.
基金supported by the Hundred-Talent Program of the Chinese Academy of Sciences。
文摘In the past few decades there has been a remarkable rise in the study of visible-light photocatalytic reduction of carbon dioxide (CO_(2)) into value-added chemicals such as methane (CH4) with water as reducing agent in order to prevent global warming and energy crisis. However, so far the conversion efficiency leaves much to be enhanced under sunlight irradiation. In this work, Cu_(2)O hollow nanospheres were synthesized via soft-template method and were combined with TiO_(2) through in-situ hydrolysis of Ti(OBu)4 under sonication. The obtained photocatalysts of Cu_(2)O and Cu_(2)O/TiO_(2) composite were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, UV-visible diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Compared to Cu_(2)O hollow nanospheres, the Cu_(2)O/TiO_(2) composite exhibited higher efficiency in photocatalytic reduction of CO_(2) into CH4 under visible-light irradiation (λ≥420 nm). This is because of the formation of a p-n heterojunction in the composites, resulting in efficient suppression of recombina- tion of the photogenerated electrons and holes as well as an improved stability of the catalyst and, thereby, the im- proved visible-light photocatalytic activity.
基金Project supported by the National Natural Science Foundation of China(U1862116)the Fundamental Research Funds for the Central Universities(GK201901001).
文摘The 7 wt%rare earth metal oxide promoted Ni-SiO_(2) catalysts of Ni-7Pr_(6)O_(11)-SiO_(2),Ni-7Nd_(2)O_(3)-SiO_(2),and Ni-7Sm_(2)O_(3)-SiO_(2) were prepared by the complex-decomposition method,and were comparatively evaluated for pressurized carbon dioxide reforming of methane(CRM)under severe conditions of 750℃,1.0 MPa,CH_(4)/CO_(2)=1,and gas hourly space velocity of 53200 mL/(g·h).The addition of rare earth metal oxide does not affect the Ni dispersion,and all of the catalysts show similarly high Ni dispersion of16.0%±0.2%.As a result,all of the catalysts are highly active for pressurized CRM,the initial CH_(4) conversions of which approach the thermodynamic equilibrium(47.0%±0.2%).In contrast,a clearly favorable effect of the added rare earth metal oxide on the stability of Ni-SiO_(2)was revealed from the CRM results for a time-on-stream of 50 h,and the highest stability without an observable decrease in the conversions of CH_(4)and CO_(2)was obtained over Ni-7Sm_(2)O_(3)-SiO_(2).Based on the characterization results of thermogravimetric differential scanning calorimetry(TG-DSC)and transmission electron microscopy(TEM),the improved stability of Ni-7Pr_(6)O_(11)-SiO_(2),Ni-7Nd_(2)O_(3)-SiO_(2),and Ni-7Sm_(2)O_(3)-SiO_(2)for pressurized CRM was manifested mainly as the suppressed formation of carbon nanotubes over the catalyst surface,the extent of which is dependent on the specific rare earth metal oxide.Moreover,the consecutive temperature programmed surface reaction of CH_(4),CO_(2),and O_(2)over Ni-7Sm_(2)O_(3)-SiO_(2)vigorously reveals that the addition of Sm_(2)O_(3)into Ni-SiO_(2)inhibits the CH_(4)decomposition but enhances the oxidization of the carbon species by CO_(2),leading to the well-balanced rates for forming and removing the coke over Ni-7Sm_(2)O_(3)-SiO_(2).These findings are not only beneficial to deeply understanding the promotional effect of rare earth metal oxides on Ni-based catalysts for CRM,but also important for extending the application of the less studied rare earth metal oxides as promoters for the metalsupported catalysts.
基金supported by the National Natural Science Foundation of China(21036009 and 20976203)the Fundamental Research Funds for the Central Universities
文摘Combination of partial oxidation of methane (POM) with carbon dioxide reforming of methane (CRM) has been studied over Ru-based catalysts at 550℃.POM,CRM and combined reaction were performed over 8wt%Ru/γ-Al2O 3 and the results show that both POM and CRM contribute to the combined reaction,between which POM plays a more important role.Moreover,the addition of Ce to Ru-based catalyst results in an improvement in the activity and CO selectivity under the adopted reaction conditions.The Ce-doped catalyst was characterized by N2 adsorption-desorption,SEM,XRD,TPR,XPS and in situ DRIFTS.The mechanism has been studied by in situ DRIFTS together with the temperature distribution of catalyst bed.The mechanism of the combined reaction is more complicated and it is the combination of POM and CRM mechanisms in nature.The present paper provides a new catalytic system to activate CH4 and CO2 at a rather low temperature.
基金supported by the National Natural Science Foundation of China(No.11075113)the Doctoral R&D Foundation of Yibin University(2010B12)
文摘A new type of Ni/MgO catalyst was prepared using atmospheric high-frequency discharge cold plasma. The influences of conventional method, plasma method, and plasma plus calcination method on the catalytic activity were studied and the CO2 reforming of methane was chosen as the probe reaction. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy, and CO2 temperature-programmed surface reaction techniques. The results suggested that the nickel-based catalyst prepared by plasma plus calcination method possessed a smaller particle size and a higher dispersion of active component, better low-temperature activity and enhanced anti-coking ability. The conversion of CO2 and CH4 was 90.70% and 89.37%, respectively, and the reaction lasted for 36 h without obvious deactivation under 101.325 kPa and 750°C with CO2/CH4 = 1/1.
基金supported by the Universiti Teknologi Malaysia and Ministry of Science,Technology and Innovation,Malaysia(Vote 79252)
文摘In this research,new catalyst with high industrial impact is developed,which can catalyze the conversion of CO2 to methane through methanation reaction.A series of catalysts based on nickel oxide were prepared using wetness impregnation technique and ageing,followed by calcination at 400℃.Rh/Ni(30:70)/Al2O3 catalyst was revealed as the most potential catalyst based on the results of catalytic activity measurement monitored by Fourier Transform Infrared Spectroscopy(FTIR)and Gas Chromatography(GC).The results showed 90.1%CO2 conversion and 70.8% yield at 400℃.
基金The National Natural Science Foundation of China under contract Nos 42076142 and 41776097the Provincial Natural Science Foundation of Fujian under contract No.2020J06030the Fund of Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration under contract No.EPR2020003.
文摘Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxide(CO_(2)),methane(CH_(4))and nitrous oxide(N_(2)O).Understanding how SLR influences GHG emissions is critical for evaluating mangrove blue carbon capability.In this study,potential effects of SLR on the GHG emissions were quantified through static closed chamber technique among three sites under different intertidal elevations,representing tidal flooding situation of SLR values of 0 cm,40 cm and 80 cm,respectively.Compared with Site SLR 0 cm,annual CO_(2) and N_(2)O fluxes decreased by approximately 75.0%and 27.3%due to higher soil water content,lower salinity and soil nutrient environments at Site SLR 80 cm.However,CH_(4) fluxes increased by approximately 13.7%at Site SLR 40 cm and 8.8%at Site SLR 80 cm because of lower salinity,higher soil water content and soil pH.CO_(2)-equivalent fluxes were 396.61 g/(m^(2)·a),1423.29 g/(m^(2)·a)and 1420.21 g/(m^(2)·a)at Sites SLR 80 cm,SLR 40 cm and SLR 0 cm,respectively.From Site SLR 0 cm to Site SLR 80 cm,contribution rate of N_(2)O and CH_(4) increased by approximately 7.42%and 3.02%,while contribution rate of CO_(2) decreased by approximately 10.44%.The results indicated that warming potential of trace CH_(4) and N_(2)O was non-negligible with SLR.Potential effects of SLR on the mangrove blue carbon capability should warrant attention due to changes of all three greenhouse gas fluxes with SLR.
基金supported by the National Natural Science Foundation of China(No.41907180).
文摘Using the observation data in Yongxing Island,South China Sea(SCS)from December 2013 to November 2018,the multiple time scales variation of atmospheric CO_(2)and CH_(4)were analyzed to understand their temporal variation characteristics and controlling factors.The regional-averaged background mole fractions of CO_(2)and CH_(4)both show a single-period sinusoidal variation with a lower value at noon and a higher value in the wee hours.In the seasonal scale,they exhibited a significant seasonal difference with higher values in winter and lower values in summer.In the annual scale,CO_(2)and CH_(4)both show an increasing trend,with an annual growth rate of approximately 3.2 ppm and 12 ppb,respectively.The annual growth rate at this site was higher than the global average.The change in atmospheric CO_(2)and CH_(4)in Yongxing Island was probably caused by the higher emission of the surrounding areas and the airflows driven by monsoon.Hopefully,the long-term and high-resolution greenhouse gases(GHGs)dataset will aid relevent researchers and decision-makers in performing more in-depth studies for GHG sources in order to derive effective strategies.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology (2012R1A2A2A01015706)the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011227042016)" Rural Development Administration, Republic of Korea
文摘Chinese cabbage was cultivated in upland soil with the addition of biochar in order to investigate the potential for reduction of greenhouse gas emissions. Barley straw biochar(BSB) was introduced in a Wagner pot(1/5000a) in amounts of 0(BSB0, control), 100(BSB100), 300(BSB300), and 500(BSB500) kg 10a^(-1). After the addition of BSB into the upland soil, carbon dioxide(CO_2) emission increased while methane(CH_4) and nitrous oxide(N_2O) emissions decreased. The highest CO2 flux was measured for the BSB500 sample,(84.6 g m^(-2)) followed by BSB300, BSB100, and BSB0 in decreasing order. Relative to those of control, the total CH_4 flux and N_2O flux for the BSB500 treatment were lower by 31.6% and 26.1%, respectively. The global warming potential(GWP) of the treatment without biochar was 281.4 g CO_2 m-2 and those for treatments with biochar were in the range from 194.1 to 224.9 g CO_2 m^(-2). Therefore, introducing BSB into upland soil to cultivate Chinese cabbages can reduce the global warming potential.