The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper ...The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.展开更多
The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500...The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500℃ for 2h or 550℃ for 1h,but decrease over 600℃.After the strength tests of extracted fibers from composite wires,the SiC coating is an excellent protection to C fibers.EPMA and EDAX showed that the C/Al interface of the composite wires is stable under treatment below 600℃,but unstable at 650℃展开更多
In this study,we synthesized high-performance Carbon Fiber/Gold/Copper(CF/Au/Cu)composite wires by using a 2-step deposition method via sputtering and electrodeposition.After Au was sputtered on PANbased CFs as a pre-...In this study,we synthesized high-performance Carbon Fiber/Gold/Copper(CF/Au/Cu)composite wires by using a 2-step deposition method via sputtering and electrodeposition.After Au was sputtered on PANbased CFs as a pre-treatment,the wettability and surface reactivity of the CFs were improved,resulting in a homogeneous deposition of Cu on their surface.At different Cu electrodeposition time,the resulting CF/Au/Cu composite wires could possess a high strength of up to 3.27 GPa(~10 times stronger than copper wires)while their electrical conductivity could be as high as 4.4×10^5 S/cm(~75%of that for copper).More importantly,since the composite wires were lightweight(up to 70%lower than Cu mass density),they are a promising candidate to substitute conventional heavy metal wires in the future electrical applications.展开更多
基金financially supported by ISSP RAS-Russian Government contracts
文摘The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.
文摘The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500℃ for 2h or 550℃ for 1h,but decrease over 600℃.After the strength tests of extracted fibers from composite wires,the SiC coating is an excellent protection to C fibers.EPMA and EDAX showed that the C/Al interface of the composite wires is stable under treatment below 600℃,but unstable at 650℃
基金Lloyd’s Register Foundation(R-265-000-553-597)for the financial support for this project.
文摘In this study,we synthesized high-performance Carbon Fiber/Gold/Copper(CF/Au/Cu)composite wires by using a 2-step deposition method via sputtering and electrodeposition.After Au was sputtered on PANbased CFs as a pre-treatment,the wettability and surface reactivity of the CFs were improved,resulting in a homogeneous deposition of Cu on their surface.At different Cu electrodeposition time,the resulting CF/Au/Cu composite wires could possess a high strength of up to 3.27 GPa(~10 times stronger than copper wires)while their electrical conductivity could be as high as 4.4×10^5 S/cm(~75%of that for copper).More importantly,since the composite wires were lightweight(up to 70%lower than Cu mass density),they are a promising candidate to substitute conventional heavy metal wires in the future electrical applications.