期刊文献+
共找到195篇文章
< 1 2 10 >
每页显示 20 50 100
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
1
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/CFs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Boosting Capacitive Deionization Performance of Commercial Carbon Fibers Cloth via Structural Regulation Based on Catalytic-Etching Effect 被引量:1
2
作者 Chunjie Zhang Dong Wang +5 位作者 Zhen Wang Guangshuai Zhang Zhichao Liu Jie Wu Jin Hu Guangwu Wen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期242-252,共11页
Monolithic carbon electrodes with robust mechanical integrity and porous architecture are highly desired for capacitive deionization but remain challenging.Owing to the excellent mechanical strength and electroconduct... Monolithic carbon electrodes with robust mechanical integrity and porous architecture are highly desired for capacitive deionization but remain challenging.Owing to the excellent mechanical strength and electroconductivity,commercial carbon fibers cloth demonstrates great potential as high-performance electrodes for ions storage.Despite this,its direct application on capacitive deionization is rarely reported in terms of limited pore structure and natural hydrophobicity.Herein,a powerful metal-organic framework-engaged structural regulation strategy is developed to boost the desalination properties of carbon fibers.The obtained porous carbon fibers features hierarchical porous structure and hydrophilic surface providing abundant ions-accessible sites,and continuous graphitized carbon core ensuring rapid electrons transport.The catalytic-etching mechanism involving oxidation of Co and subsequent carbonthermal reduction is proposed and highly relies on annealing temperature and holding time.When directly evaluated as a current collector-free capacitive deionization electrode,the porous carbon fibers demonstrates much superior desalination capability than pristine carbon fibers,and remarkable cyclic stability up to 20 h with negligible degeneration.Particularly,the PCF-1000 showcases the highest areal salt adsorption capacity of 0.037 mg cm^(−2) among carbon microfibers.Moreover,monolithic porous carbon fibers-carbon nanotubes with increased active sites and good structural integrity by in-situ growth of carbon nanotubes are further fabricated to enhance the desalination performance(0.051 mg cm^(−2)).This work demonstrates the great potential of carbon fibers in constructing high-efficient and robust monolithic electrode for capacitive deionization. 展开更多
关键词 capacitive deionization carbon fibers cloth catalytic-etching monolithic electrodes
下载PDF
Effects of Pre-oxidation Conditions on Adsorption Performance of Activated Carbon Fibers 被引量:2
3
作者 蔡玉琳 徐山青 丁辛 《Journal of Donghua University(English Edition)》 EI CAS 2012年第3期249-253,共5页
In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs) ,electrospun polyacrylonitrile ( PAN) fiber webs were adopted as precursors for preparing AC... In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs) ,electrospun polyacrylonitrile ( PAN) fiber webs were adopted as precursors for preparing ACFs. Firstly,the webs were stabilized under different pre-oxidation conditions; secondly,the pre-oxidative fibers were chemically activated by high temperature treatment in nitrogen. Pre-oxidation temperature,heating rate,and treatment time are the main factors on affecting the adsorption performance of the ACFs. Scanning electron microscope ( SEM) , differential scanning calorimeter ( DSC ) ,and Fourier transform infrared spectroscopy ( FTIR ) were used to characterize the structure and property of the pre-oxidative fibers,and the dynamic benzene adsorption capacity of benzene of ACFs was measured. The results indicate that the moderate pre-oxidation condition is necessary to prepare the ACFs with better adsorption capacity,and the optimal oxidation conditions are to increase from room temperature to 230 ℃ with a heating rate of 0. 75 ℃·min - 1 ,held at the peak temperature for 30 min. 展开更多
关键词 polyacrylonitrile ( PAN ) ELECTROSPINNING PRE-OXIDATION extent of reaction activated carbon fibers ( ACFs) benzene adsorption capacity
下载PDF
Preparation and Characterization of Three-dimensional Photocatalyst——TiO_2 Particulate Film Immobilized on Activated Carbon Fibers 被引量:1
4
作者 傅平丰 栾勇 +2 位作者 戴学刚 张建强 张安华 《过程工程学报》 EI CAS CSCD 北大核心 2006年第3期482-486,共5页
关键词 liquid phase deposition TiO2 particulate film activated carbon fibers three-dimensional structure photocatalytic activity
下载PDF
S-doped porous carbon fibers with superior electrode behaviors in lithium ion batteries and fuel cells 被引量:1
5
作者 Peng Jin Long Li +5 位作者 Xiaohu Gu Yanshao Hu Xiaojing Zhang Xiongchao Lin Xinlong Ma Xing He 《Materials Reports(Energy)》 2022年第4期62-71,共10页
The orientation construction of S-doped porous carbon fibers(SPCFs)is realized by the facile template-directed methodology using asphalt powder as carbon source.The unique fiber-like morphology without destruction can... The orientation construction of S-doped porous carbon fibers(SPCFs)is realized by the facile template-directed methodology using asphalt powder as carbon source.The unique fiber-like morphology without destruction can be well duplicated from the template by the developed methodology.MgSO4 fibers serve as both templates and S dopant,realizing the in-situ S doping into carbon frameworks.The effects of different reaction temperatures on the yield and S doping level of SPCFs are investigated.The S doping can not only significantly enhance the electrical conductivity,but also introduce more defects or disorders.As anode material for lithium ion batteries(LIBs),SPCFs electrode delivers better rate capability than undoped PCFs.And the capacity of SPCFs electrode retains around 90%after 300 cycles at 2 A g1,exhibiting good cycling stability.As the electrocatalysts for fuel cells,the onset potentials of SPCFs obtained at 800 and 900C are concentrated at 0.863 V,and the higher kinetic current densities at 0.4 V of them are larger than that of PCFs,demonstrating the superior electrocatalytic performance.Due to the synergistic effect of abundant pore channels and S doping,SPCFs electrode exhibits superior electrochemical performances as anode for LIBs and elecctrocatalyst for fuel cells,respectively.Additionally,the oriented conversion of asphalt powder into high-performance electrode material in this work provides a new way for the high value application of asphalt. 展开更多
关键词 S-doped porous carbon fibers Template-directed methodology Lithium ion batteries Anode Fuel cells ELECTROCATALYST
下载PDF
Potential-aided recovery of iodide using 2-D nanosheet CuxO coating polymer/graphene/carbon fibers composite
6
作者 Yexiao Yu Guanping Jin +3 位作者 Yuhong Fang Zheng Xu Xiaoyuan Lü Chunnian Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1046-1054,共9页
2-D nanosheet Cu2O doped CuO coating poly m-phenylenediamine and melamine/graphene/carbon fibers composite(CuxO/MPM/GFs)was firstly fabricated by compound electrochemical method.CuxO/MPM/GFs was successfully used to t... 2-D nanosheet Cu2O doped CuO coating poly m-phenylenediamine and melamine/graphene/carbon fibers composite(CuxO/MPM/GFs)was firstly fabricated by compound electrochemical method.CuxO/MPM/GFs was successfully used to the recovery of iodide(I-)from salt water by lower potential-aided sorption and desorption processes.The potential-aided recovery of I-at CuxO/MPM/GFs was characterized by FE-SEM,XRD,IR,Raman,XPS,UV-vis and electrochemical techniques in detail.The maximal adsorption capacity of 86.82 mg·g^-1 could be obtained with a pseudo-second-order model at 0.8 V for 210 min in pH 5.0,0.1 mol·L^-1 NaCl,and the process accompanied the generation of CuI,CuO and I5-.The I-could be quickly desorbed from the electrode with a transfer of CuI to Cu2O by cycle voltammetry from-1.0 to 0.5 V for 90 cycles in pH 9.0,0.1 mol·L^-1 KNO3.Thus,CuxO/MPM/GFs was renewable in the continuous electrochemical-adsorption-desorption processes. 展开更多
关键词 Potential-aided recovery IODIDE Cu2O carbon fibers composite
下载PDF
Effects of electrochemical oxidation on surface and mechanical properties of dry-jet wet spun carbon fibers
7
作者 ZHAO ZeHua MA Yan +3 位作者 SHEN ZhiGang CHEN Liang WANG XiaoXu LIU Jie 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第5期22-29,共8页
The surface of dry-jet wet spun carbon fibers(CFs)is relatively smooth compared with those of wet spun CFs,which results in weak interfacial interactions between the fiber and the polymer resin.A surface functionaliza... The surface of dry-jet wet spun carbon fibers(CFs)is relatively smooth compared with those of wet spun CFs,which results in weak interfacial interactions between the fiber and the polymer resin.A surface functionalization treatment is particularly important to unleash the full potential of the superior mechanical properties of dry-jet wet spun CFs.In this study,the effects of electrochemical oxidation treatment time and current density on the surface structures and the mechanical properties of dry-jet wet spun CFs were investigated.The interlaminar shear strength of the CFs improves significantly from 69 to 84 MPa after 120 s of treatment.Further structural analysis reveals that the improvements are due to the addition of oxygen-containing functional groups and the optimization of the morphology on the surface of the CFs. 展开更多
关键词 carbon fibers dry-jet wet spun electrochemical oxidation interlaminar shear strength
下载PDF
A host-guest approach to fabricate metallic cobalt nanoparticles embedded in silk-derived N-doped carbon fibers for efficient hydrogen evolution
8
作者 Fenglei Lyu Qingfa Wang +3 位作者 Han Zhu Mingliang Du Li Wang Xiangwen Zhang 《Green Energy & Environment》 SCIE 2017年第2期151-159,共9页
Hydrogen evolution reaction(HER) plays a key role in generating clean and renewable energy. As the most effective HER electrocatalysts, Pt group catalysts suffer from severe problems such as high price and scarcity. I... Hydrogen evolution reaction(HER) plays a key role in generating clean and renewable energy. As the most effective HER electrocatalysts, Pt group catalysts suffer from severe problems such as high price and scarcity. It is highly desirable to design and synthesize sustainable HER electrocatalysts to replace the Pt group catalysts. Due to their low cost, high abundance and high activities, cobalt-incorporated N-doped nanocarbon hybrids are promising candidate electrocatalysts for HER. In this report, we demonstrated a robust and eco-friendly host-guest approach to fabricate metallic cobalt nanoparticles embedded in N-doped carbon fibers derived from natural silk fibers. Benefiting from the onedimensional nanostructure, the well-dispersed metallic cobalt nanoparticles and the N-doped thin graphitized carbon layer coating, the best Cobased electrocatalyst manifests low overpotential(61 mV@10 mA/cm^2) HER activity that is comparable with commercial 20% Pt/C, and good stability in acid. Our findings provide a novel and unique route to explore high-performance noble-metal-free HER electrocatalysts. 展开更多
关键词 SILK carbon fibers Cobalt nanoparticles Hydrogen evolution Nitrogen doping
下载PDF
Pyrolytic Recycling of Carbon Fibers from Prepregs and Their Use in Polyamide Composites
9
作者 Stephan Schwarz Thomas Höftberger +2 位作者 Christoph Burgstaller Andreas Hackl Clemens Schwarzinger 《Open Journal of Composite Materials》 2020年第4期92-105,共14页
Carbon fibers composites are well</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">known as high tech materials but are also recognized as... Carbon fibers composites are well</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">known as high tech materials but are also recognized as a problem after use as they have to be deposited in landfills. Pyrolysis is an attractive process for recycling carbon fibers from used composites as well as offcuts from prepregs. Pyrolysis of carbon fiber composite prepregs is carried out in a pilot plant with a single screw reactor. The pyrolysis products, carbon fibers and pyrolysis vapor are fully characterized. Variation of pyrolysis temperature is carried out to obtain carbon fibers with the best possible surface properties. In order to compare the mechanical properties of the recycled carbon fibers with virgin material, composite materials with polyamide are produced and their properties compared. 展开更多
关键词 carbon fibers Composites Mechanical Properties
下载PDF
Lignin-based carbon fibers: Formation, modification and potential applications 被引量:5
10
作者 Shichao Wang Jixing Bai +4 位作者 Mugaanire Tendo Innocent Qianqian Wang Hengxue Xiang Jianguo Tang Meifang Zhu 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期578-605,共28页
As an aromatic polymer in nature, lignin has recently attracted gross attention because of its advantages of high carbon content, low cost and bio-renewability. However, most lignin is directly burnt for power generat... As an aromatic polymer in nature, lignin has recently attracted gross attention because of its advantages of high carbon content, low cost and bio-renewability. However, most lignin is directly burnt for power generation to satisfy the energy demand of the pulp mills. As a result, only a handful of isolated lignin is used as a raw material. Thus, increasing value addition on lignin to expand its scope of applications is currently a challenge demanding immediate attention. Many efforts have been made in the valorization of lignin, including the preparation of precursors for carbon fibers. However, its complex structure and diversity significantly restrict the spinnability of lignin. In this review, we provide elaborate knowledge on the preparation of lignin-based carbon fibers ranging from the relationships among chemical structures, formation conditions and properties of fibers, to their potential applications. Specifically, control procedures for different spinning methods of lignin, including melt spinning, solution spinning and electrospinning, together with stabilization and carbonization are deeply discussed to provide an overall understanding towards the formation of lignin-based carbon fibers. We also offer perspectives on the challenges and new directions for future development of lignin-based carbon fibers. 展开更多
关键词 Lignin-based carbon fiber Melt spinning Solution spinning ELECTROSPINNING
下载PDF
3D printed aluminum matrix composites with well-defined ordered structures of shear-induced aligned carbon fibers
11
作者 Yunhong Liang Han Wu +2 位作者 Zhaohua Lin Qingping Liu Zhihui Zhang 《Nano Materials Science》 EI CAS CSCD 2022年第4期366-375,共10页
Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical prope... Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing.The microstructures of the printed and sintered samples and mechanical properties of the composites were investigated.Carbon fibers and aluminum powder were bonded together with resin.The spatial arrangement of the carbon fibers was fixed in the aluminum matrix by shear-induced alignment in the3D printing process.As a result,the elongation of the composites with a parallel arrangement of aligned fibers and the impact toughness of the composites with an orthogonal arrangement were 0.82%and 0.41 J/cm^(2),respectively,about 0.4 and 0.8 times higher than that of the random arrangement. 展开更多
关键词 3D printing Shear-induced alignment carbon fiber Aluminum matrix composites Powder metallurgy
下载PDF
Comparative Study on Tribological Behavior of Graphene/Polyimide and Carbon Fibers/Polyimide Composites: A Review
12
作者 Niyobuhungiro Daniel Hong Liu 《World Journal of Engineering and Technology》 2021年第1期26-50,共25页
Recently, graphene and carbon fibers have enticed extensive consideration in many scientific fields, they are considered by many scientists to be one of the most promising materials in the 21<sup>st</sup> ... Recently, graphene and carbon fibers have enticed extensive consideration in many scientific fields, they are considered by many scientists to be one of the most promising materials in the 21<sup>st</sup> century. Due to the uniqueness of their properties w<span><span><span style="font-family:;" "="">as</span></span></span><span><span><span style="font-family:;" "=""> attracted to be used to reinforce polyimide. Impressive graphene properties coupled with those excellent of polyimide composites produced composites materials with good tribological properties, different contents of graphene and its derivatives tend to improve polyimide composites properties particularly friction and wear. Furthermore, nanofillers decorated graphene derivatives showed also an effect on the tribological properties of composites. Carbon fibers coupled with polyimide composites also reviewed and showed a significance in the improvement of the properties of composites materials. The results nanofillers reinforced carbon fibers/polyimide exhibit enhanced tribological properties, which can be applied in various fields. <span>Therefore, this survey article gives an enormous review study of the tribological properties under various conditions of graphene/polyimide and car</span></span></span></span><span><span><span style="font-family:;" "="">- </span></span></span><span><span><span style="font-family:;" "="">bon fibers/polyimide composites. Besides the effects of nanofillers size on tribological properties, preparation, and research challenges were also reviewed.</span></span></span> 展开更多
关键词 GRAPHENE carbon Fiber Polyimide Composite TRIBOLOGY
下载PDF
STUDIES ON THE DYNAMIC COMPETITIVE ADSORPTION OF ORGANIC VAPORS ON THE ACTIVATED CARBON FIBERS ACTIVATED WITH PHOSPHORIC ACID
13
作者 FU Ruowen LIU Ling +1 位作者 GUO Xindong ZENG Hanm in 《Chinese Journal of Reactive Polymers》 2000年第2期97-104,共8页
The dynamic competitive adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditions were investigated by gas chromatography in this paper. The studied mixtures includ... The dynamic competitive adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditions were investigated by gas chromatography in this paper. The studied mixtures included benzene/toluene, toluene/xylene, benzene/isopropylbenzene, ethyl acetate/toluene and benzene/ethyl acetate. Experimental results show that various ACF-Ps, as with ACF-W, can remove both vapors in binary vapor mixtures with over 99% of removal efficiency before the breakthrough point of the more weakly adsorbed vapor. In dynamic competitive adsorption, the more weakly adsorbed vapor not only penetrates early, but also will be displaced and desorbed consequently by stronger adsorbate and therefore produces a rolling up in the breakthrough curve. The ACF-Ps prepared at different temperatures have somewhat different adsorption selectivity. The feed concentration ratio of vapors, the length/diameter ratio and the thick of bed have effect on competitive adsorption. The competitive adsorption ability of a vapor is mainly related to its boiling point. Usually, the higher the boiling point, the stronger the vapor adsorbed on ACF-P. 展开更多
关键词 activated carbon fiber phosphoric acid activation dynamic competitive adsorption binary organic vapor mixture
下载PDF
One dimensional pea-shaped NiSe 2 nanoparticles encapsulated in N-doped graphitic carbon fibers to boost redox reversibility in sodium-ion batteries
14
作者 Hyunjeong Gim Achmad Yanuar Maulana +7 位作者 Jiwon Choi Jungwook Song Boram Yun Yuri Jeong Nahyun An Myeongkee Park Cybelle M.Futalan Jongsik Kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期215-226,共12页
In recent years,sodium-ion batteries(SIBs)have emerged as a promising technology for energy storage systems(ESSs)because of the abundance and affordability of sodium.Recently,metal selenides have been studied as promi... In recent years,sodium-ion batteries(SIBs)have emerged as a promising technology for energy storage systems(ESSs)because of the abundance and affordability of sodium.Recently,metal selenides have been studied as promising high-performance conversion-type anode materials in SIBs.Among them,nickel se-lenide(NiSe_(2))has received considerable attention due to its high theoretical capacity of 495 mAh g^(-1)and conductivity.However,it still suffers from poor cycling stability because of the low electrochemical reactivity,large volume expansion,and structural instability during cycles.To address these challenges,NiSe_(2)nanoparticles encapsulated in N-doped graphitic carbon fibers(NiSe_(2)@NGCF)were synthesized by using ZIF-8 as a template.NiSe_(2)@NGCF showed a high discharge capacity of 558.3 mAh g^(-1)with a fading rate of 0.14%per cycle after 200 cycles at 0.5 A g^(-1)in 0.01-3.0 V.At a very high current density of 5 A g^(-1),the capacity still displayed excellent long-term cycle life with a discharge capacity of 406.1 mAh g^(-1)with a fading rate of 0.016%per cycle after 3000 cycles.The mechanism of the excellent electrochem-ical performance of NiSe_(2)@NGCF was thoroughly investigated by ex-situ XRD,TEM,and SEM analyses.Furthermore,NiSe_(2)@NGCF//Na_(3)V_(2)(PO_(4))_(3)full-cell also delivered an excellent reversible capacity of 378.7 mAh g^(−1)at 0.1 A g^(−1)after 50 cycles,demonstrating its potential for practical application in SIBs. 展开更多
关键词 Sodium-ion batteries Anode materials Nickel selenide N-doped graphitic carbon fibers One-dimensional electrode
原文传递
Improved damage tolerance and oxidation resistance of (Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2)–SiC by introducing chopped carbon fibers
15
作者 Feilong Huang Hailong Wang +4 位作者 Cheng Fang Mingliang Li Gang Shao Jinpeng Zhu Yanchun Zhou 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第1期101-112,共12页
High-entropy diborides(HEBs)are considered as promising high-temperature structure materials owing to their high melting point and excellent thermal stability.However,the intrinsic brittleness is the main obstacle tha... High-entropy diborides(HEBs)are considered as promising high-temperature structure materials owing to their high melting point and excellent thermal stability.However,the intrinsic brittleness is the main obstacle that seriously limits their practical applications.To overcome with this obstacle,carbon fibers(Cf)with outstanding mechanical properties are used in the present work as a first attempt to improve the damage tolerance of HEBs.The as-prepared C_(f)/(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2)–SiC composite(C_(f)/HEB–SiC)shows high relative density(97.9%)and good mechanical properties with flexural strength of 411±3 MPa and fracture toughness of 6.15±0.11 MPa·m^(1/2).More importantly,the damage tolerance parameter(Dt)has increased from 0.10 m^(1/2) for HEB–SiC to 0.29 m^(1/2) for C_(f)/HEB–SiC.Through microstructural analysis and Vickers indentation of the composite,the toughening mechanisms are disclosed.The carbon fibers coated with carbon coatings demonstrate unique capacity for prolonging the crack propagation path,which promotes the reliability of the composite effectively.Moreover,the C_(f)/(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2)–SiC composite also exhibits good static oxidation resistance in the temperature range of 1100–1500℃in air due to the formation of the protective oxide layer constituting of multicomponent oxides(Zr)HfTiO4 and(Zr)Hf_(6)Ta_(2)O_(17) embedded in a continuous SiO_(2) glass.These results are promising,and this primary work can be used as a reference to the synthesis of C_(f)/HEBs for thermal protection materials under hightemperature serving conditions. 展开更多
关键词 high-entropy ceramics carbon fibers(Cf) toughening mechanisms oxidation resistance
原文传递
The dispersion of iron nitride among porous carbon fibers to enhance redox conversion for high-performance zinc-iodine batteries
16
作者 Siyu Ding Qianwu Chen +2 位作者 Song Chen Yadong Tian Jintao Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期332-337,共6页
To address the insulating nature and the shuttle effect of iodide species that would deteriorate the battery performance,herein iron nitride is well-dispersed into porous carbon fibers with good flexibility via the fa... To address the insulating nature and the shuttle effect of iodide species that would deteriorate the battery performance,herein iron nitride is well-dispersed into porous carbon fibers with good flexibility via the facile electrospinning method and subsequent pyrolysis.The polyacrylonitrile precursor introduces the nitrogen doping under thermal treatment while the addition of iron acetylacetonate leads to the insitu formation of iron nitride among the carbon matrix.The crucial pyrolysis procedure is adjustable to determine the hierarchical porous structure and final composition of the novel carbon fiber composites.As the self-supporting electrode for loading iodine,the zinc-iodine battery exhibits a large specific capacity of 214 mAh/g and good cycling stability over 1600 h.In the combination of in-situ/ex-situ experimental measurements with the theoretical analysis,the in-depth understanding of intrinsic interaction between composited support and iodine species elucidates the essential mechanism to promote the redox kinetics of iodine via the anchoring effect and electrocatalytic conversion,thus improving cycling life and rate performance.Such fundamental principles on the basic redox conversion of iodine species would evoke the rational design of advanced iodine-based electrodes for improving battery performance. 展开更多
关键词 Iron nitride Porous carbon fibers Redox conversion Rechargeable zinc-iodine batteries Enhanced cycling stability
原文传递
Synergistic Optimization of Toughness and EMI Shielding Properties in Rigid Polyurethane Composites by Designing Ring Structures on the Surface of Carbon Fibers
17
作者 Yi-Long Zhou Wei-Wei Li +2 位作者 Hui-Xin Liu Kai-Yuan Pei Shi-Ting Li 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第12期1958-1968,I0010,共12页
How to achieve both toughness and enhanced electromagnetic interference shielding effectiveness(EMI SE)of carbon fibers(CFs)reinforced rigid polyurethane(RPU)composites is a significative challenge at present.In this ... How to achieve both toughness and enhanced electromagnetic interference shielding effectiveness(EMI SE)of carbon fibers(CFs)reinforced rigid polyurethane(RPU)composites is a significative challenge at present.In this work,a ring-shaped zinc coating was deposited on the short CFs by electrodeposition technique.It is expected to improve the interfacial properties between the fibers and the resin matrix as well as enhance the EMI shielding properties of the composites by changing the surface morphology and roughness of the fibers.Results showed that the surface free energy of the ring-shaped zinc modified carbon fibers(RS-CFs)increased from 49.0 mJ/m^(2) to 53.2 mJ/m^(2),indicating that the surface roughness and wettability of the CFs were effectively improved.In comparison with the pristine short carbon fibers/rigid polyurethane(CFs/RPU)composites,tensile strength and tensile toughness of RS-CFs modified composites were increased by 27.1% and 121.4%,respectively.In addition,the bending and impact strengths of RS-CFs reinforced RPU composites were also improved.Notably,the electrical conductivity of RS-CFs/RPU composites reached 1.2×10^(-5) S/m,which was much higher than that of CFs/RPU composites at 1.4×10^(-10) S/m.Moreover,the EMI SE of the modified composites reached 22 dB,which was 152.9% higher than that of CFs/RPU composites.The enhanced electrical conductivity and EMI shielding properties of the composites could be attributed to the synergistic effect of the porous structure in the RPU matrix and the CFs modified by the metal coating. 展开更多
关键词 carbon fiber Surface decoration Rigid polyurethane Mechanical properties EMI shielding
原文传递
Carbon Fibers for Bioelectrochemical:Precursors,Bioelectrochemical System,and Biosensors
18
作者 Donghao Li Yimeng Feng +2 位作者 Fengxiang Li Jingchun Tang Tao Hua 《Advanced Fiber Materials》 SCIE EI 2023年第3期699-730,共32页
Carbon fibers(CFs)demonstrate a range of excellent properties including(but not limited to)microscale diameter,high hardness,high strength,light weight,high chemical resistance,and high temperature resistance.Therefor... Carbon fibers(CFs)demonstrate a range of excellent properties including(but not limited to)microscale diameter,high hardness,high strength,light weight,high chemical resistance,and high temperature resistance.Therefore,it is necessary to summarize the application market of CFs.CFs with good physical and chemical properties stand out among many materials.It is believed that highly fibrotic CFs will play a crucial role.This review first introduces the precursors of CFs,such as polyacrylonitrile,bitumen,and lignin.Then this review introduces CFs used in BESs,such as electrode materials and modification strategies of MFC,MEC,MDC,and other cells in a large space.Then,CFs in biosensors including enzyme sensor,DNA sensor,immune sensor and implantable sensor are summarized.Finally,we discuss briefly the challenges and research directions of CFs application in BESs,biosensors and more fields. 展开更多
关键词 carbon fiber material BIOELECTROCHEMISTRY Microbial fuel cell Microbial electrolysis cell MODIFIED Biosensors
原文传递
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
19
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
下载PDF
Preparation and Analysis of Carbon Fiber-Silicon Carbide Thermally Conductive Asphalt Concrete
20
作者 Zhiyong Yang Enjie Hu +3 位作者 Lei Xi Zhi Chen Feng Xiong Chuanhai Zhan 《Fluid Dynamics & Materials Processing》 EI 2024年第4期705-723,共19页
An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min... An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass. 展开更多
关键词 carbon fiber silicon carbide thermally conductive asphalt concrete road performance electrothermal snow melting
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部