Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei...Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.展开更多
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf...We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.展开更多
Monolithic carbon electrodes with robust mechanical integrity and porous architecture are highly desired for capacitive deionization but remain challenging.Owing to the excellent mechanical strength and electroconduct...Monolithic carbon electrodes with robust mechanical integrity and porous architecture are highly desired for capacitive deionization but remain challenging.Owing to the excellent mechanical strength and electroconductivity,commercial carbon fibers cloth demonstrates great potential as high-performance electrodes for ions storage.Despite this,its direct application on capacitive deionization is rarely reported in terms of limited pore structure and natural hydrophobicity.Herein,a powerful metal-organic framework-engaged structural regulation strategy is developed to boost the desalination properties of carbon fibers.The obtained porous carbon fibers features hierarchical porous structure and hydrophilic surface providing abundant ions-accessible sites,and continuous graphitized carbon core ensuring rapid electrons transport.The catalytic-etching mechanism involving oxidation of Co and subsequent carbonthermal reduction is proposed and highly relies on annealing temperature and holding time.When directly evaluated as a current collector-free capacitive deionization electrode,the porous carbon fibers demonstrates much superior desalination capability than pristine carbon fibers,and remarkable cyclic stability up to 20 h with negligible degeneration.Particularly,the PCF-1000 showcases the highest areal salt adsorption capacity of 0.037 mg cm^(−2) among carbon microfibers.Moreover,monolithic porous carbon fibers-carbon nanotubes with increased active sites and good structural integrity by in-situ growth of carbon nanotubes are further fabricated to enhance the desalination performance(0.051 mg cm^(−2)).This work demonstrates the great potential of carbon fibers in constructing high-efficient and robust monolithic electrode for capacitive deionization.展开更多
Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Rama...Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Raman spectra. It is found that Ni-Fe alloy exhibits significant catalytic effect on the graphitization of the carbon fibers at low temperatures. The degree of graphitization of the carbon fibers coated with Ni-Fe alloy (57.91% Fe, mass fraction) reaches 69.0% through heat treatment at 1 250 °C. However, the degree of graphitization of the carbon fibers without Ni-Fe alloy is only 30.1% after being heat-treated at 2 800 °C. The catalytic effect of Ni-Fe alloy on graphitization of carbon fibers is better than that of Ni or Fe at the same temperature, indicating that Ni and Fe elements have synergic catalytic function. Furthermore, Fe content in the Ni-Fe alloy also influences catalytic effect. The catalytic graphitization of Ni-Fe alloy follows the dissolution-precipitation mechanism.展开更多
The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-bas...The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-based composite is effective for strain/stress self-monitoring. In the indirect tensile test, for a completely conductive asphalt concrete specimen, the piezoresistivity was very weak and slightly positive, which meant the resistivity increase with the increment of tensile strain at all stress/strain amplitudes, with the gage factor as high as 6. The strain self-sensing ability was superior in the case of higher graphite content. However, when the conductive concrete was embedded into common asphalt concrete specimen as a partial structure function, the piezoresistivity was positive at all stress/strain amplitudes and with the gage factor of 13, which was much higher than that of completely conductive specimen. Thus, the strain self-sensing ability was superior when conductive asphalt concrete was taken in as a partial structure function. In the wheel-rolling test, the piezoresistivity was highly positive. At any stress amplitude, the piezoresistivity was strong, with the gage factor as high as 100, which was higher for a stress amplitude of 0.7 MPa than that of 0.5 MPa.展开更多
Combined nitric acid oxidation method and polyaniline (PANI)-coated method were applied to modify the surface properties of short carbon fibers (SCF). The electrical and mechanical properties of acrylic coatings w...Combined nitric acid oxidation method and polyaniline (PANI)-coated method were applied to modify the surface properties of short carbon fibers (SCF). The electrical and mechanical properties of acrylic coatings with 50 wt pct PANI-coated carbon fiber were investigated by using scanning electron microscope (SEM), UV-Vis spectrophotometer, four-probe method and the coaxial cable method. The results of the pH measurement and XPS (X-ray photoelectron spectroscopy) patterns showed that the oxygen functional groups, such as -OH and -COOH, were attached on the carbon fiber surfaces after oxidation treatment. The XPS analysis of PANl-coated oxidized SCF (PAOSCF) revealed that PANI may bond on the surface of oxidized SCF with chemical bonds. SEM images and surface roughness analyses showed that PANl-coated layer changed the surface morphology. Compared with SCF/acrylic coating, the surface resistivity of PAOSCF/acrylic coating decreased from17.1 to 5.3 Ω/sq and the shielding efficiency (SE) value increased from 1.54 to 23.3 dB.展开更多
A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbo...A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbon fibers in a uniformly dispersed Mo-B sol.The as-treated carbon fibers were then graphitized at 2 400 ℃ for 2 h.The structural changes were characterized by X-ray diffractometry(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and high-resolution transmission electronic microscopy(HRTEM).The results show that much better graphitization can be achieved in the presence of Mo-B,with an interlayer spacing(d002) of 0.335 8 nm and a crystalline size(Lc) of 28 nm.展开更多
Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and cataly...Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and catalysis capacity for SO2. The surface properties of the untreated and plasma-treated VACFs were diagnosed by SEM, BET, FTIR, and XPS, and the adsorption capacities of VACFs for SO2 were also compared and discussed. The results show that after the plasma treatment, the external surface of VACFs was etched and became rougher, while the surface area and the total pore volume decreased. FTIR and XPS revealed that nitrogen atoms were introduced onto the VACFs surface and the distribution of functional groups on the VACFs surface was changed remarkably. The adsorption characteristic of SO2 indicates that the plasmatreated VACFs have better adsorption capacity than the original VACFs due to the nitrogen functional groups and new functional groups formed in modification, which is beneficial to the adsorption of SO2.展开更多
The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechani...The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechanical properties of precursor fibers thermally stabilized and their resulting carbon fibers u'ere characterized by the combiination use of densities, wide-angle X-ray diffraction (WAXD), X-ray photoelectron speetroscopy (XPS), elemental analysis ( EA ), Fourier traasform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), etc.KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor.fiber, and transform C≡N groups to C≡N ones, meamchile , it can decreuse the crystal .size increuse the orientation index and the costallinity index, furthermore it can increuse the densities of modified PAN precursors and resuhing thermally stabilized fibers. As a result, the carbon fibers developed from modified PAN fibers show an improvement in tensile strength of 31.25 % and an improvement in elongation of 77.78 % , but a decrease of 16. 52% in Young's modulus.展开更多
A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-C...A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.展开更多
In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of ...In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.展开更多
In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for prepar...In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for preparing ACFs. Firstly, the webs were stabilized under different pre-oxidation conditions; secondly, the pre-oxidative fibers were chemically activated by high temperature treatment in nitrogen. Pre-oxidation temperature, heating rate, and treatment time are the main factors on affecting the adsorption performance of the ACFs. Scanning electron microscope ( SEM), differential scanning calorimeter (DSC), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure and property of the pre-oxldatlve fibers, and the dynamic benzene adsorption capacity of benzene of ACFs was measured. The results indicate that the moderate pre-oxidation condition is necessary to prepare the ACFs with better adsorption capacity, and the optimal oxidation conditions are to increase from room temperature to 230 ~C with a heating rate of 0.75 ~C ~ min -1 held at the peak temperature for 30min.展开更多
Structure characteristics about activated carbon fibers (ACF) and polyimide (P84) doped ACF modified by HNO3 solution were studied to apply in mercury removal in coal-fired flue gases. The P84, which was always used i...Structure characteristics about activated carbon fibers (ACF) and polyimide (P84) doped ACF modified by HNO3 solution were studied to apply in mercury removal in coal-fired flue gases. The P84, which was always used in the non-woven fabric for bag filter, was intermingled with polyacrylonitrile-based ACF (PAN-ACF) in the weight ratio of 1∶1 in order to make the doped ACF with P84 (doped-ACF-P84). Then the doped-ACF-P84 fibers were modified by HNO3 solution. The structure and morphology of doped-ACF-P84 were characterized and compared with those of ACF and doped-ACF-P84 modified by HNO3solution. The results show that the modified doped-ACF-P84 fibers have almost the same pore structure and specific surface area comparing with the original one. However, contrasted with the original PAN-ACF, the doped-ACF-P84 fibers modified by HNO3 solution have more oxygen-containing groups used for mercury removal. In particular, they have more lactone and carboxyl groups.展开更多
A novel Pt@ZnO nanorod/carbon fiber (NR/CF) with hierarchical structure was prepared by atomic layer deposition combined with hydrothermal synthesis and magnetron sputtering (MS). The morphology of Pt changes from...A novel Pt@ZnO nanorod/carbon fiber (NR/CF) with hierarchical structure was prepared by atomic layer deposition combined with hydrothermal synthesis and magnetron sputtering (MS). The morphology of Pt changes from nanoparticle to nanorod bundle with controlled thickness of Pt between 10 and 50 nm. Significantly, with the increase of voltage from 0 to 0.6 V (vs. standard calomel electrode), the prompt photocurrent generated on ZnO NR/CF increases from 0235 to 0.725 mA. Besides, the Pt@ZnO NR/CF exhibited higher electrochemical active surface area (ECSA) value, better methanol oxidation ability and CO tolerance than Pt@CF, which demonstrated the importance of the multifunctional ZnO support. As the thickness of Pt increasing from 10 to 50 rim, the ECSA values were improved proportionally, leading to the improvement of methanol oxidation ability. More importantly, UV radiation increased the density of peak current of Pt@ZnO NR/CF towards methanol oxidation by additional 42.4%, which may be due to the synergy catalysis of UV light and electricity.展开更多
Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers ...Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.展开更多
2-D nanosheet Cu2O doped CuO coating poly m-phenylenediamine and melamine/graphene/carbon fibers composite(CuxO/MPM/GFs)was firstly fabricated by compound electrochemical method.CuxO/MPM/GFs was successfully used to t...2-D nanosheet Cu2O doped CuO coating poly m-phenylenediamine and melamine/graphene/carbon fibers composite(CuxO/MPM/GFs)was firstly fabricated by compound electrochemical method.CuxO/MPM/GFs was successfully used to the recovery of iodide(I-)from salt water by lower potential-aided sorption and desorption processes.The potential-aided recovery of I-at CuxO/MPM/GFs was characterized by FE-SEM,XRD,IR,Raman,XPS,UV-vis and electrochemical techniques in detail.The maximal adsorption capacity of 86.82 mg·g^-1 could be obtained with a pseudo-second-order model at 0.8 V for 210 min in pH 5.0,0.1 mol·L^-1 NaCl,and the process accompanied the generation of CuI,CuO and I5-.The I-could be quickly desorbed from the electrode with a transfer of CuI to Cu2O by cycle voltammetry from-1.0 to 0.5 V for 90 cycles in pH 9.0,0.1 mol·L^-1 KNO3.Thus,CuxO/MPM/GFs was renewable in the continuous electrochemical-adsorption-desorption processes.展开更多
Two different PAN precursors with various comonomers were wet-spun. The properties and structurul changes of PAN precursors and their evolution during preoxidation and carbonization process were characterized by the u...Two different PAN precursors with various comonomers were wet-spun. The properties and structurul changes of PAN precursors and their evolution during preoxidation and carbonization process were characterized by the use of DSC , FTIR and traditional parameters, e g, tensile strength. It is demonstrated that acrylamide( AAM ) is very effective to make the DSC peak be separated compared to methyl acrylate ( MA ). As a result, carbon fibers developed from AAM-contained precursors have a better tenacity compared to those developed from MAcontained ones.展开更多
The orientation construction of S-doped porous carbon fibers(SPCFs)is realized by the facile template-directed methodology using asphalt powder as carbon source.The unique fiber-like morphology without destruction can...The orientation construction of S-doped porous carbon fibers(SPCFs)is realized by the facile template-directed methodology using asphalt powder as carbon source.The unique fiber-like morphology without destruction can be well duplicated from the template by the developed methodology.MgSO4 fibers serve as both templates and S dopant,realizing the in-situ S doping into carbon frameworks.The effects of different reaction temperatures on the yield and S doping level of SPCFs are investigated.The S doping can not only significantly enhance the electrical conductivity,but also introduce more defects or disorders.As anode material for lithium ion batteries(LIBs),SPCFs electrode delivers better rate capability than undoped PCFs.And the capacity of SPCFs electrode retains around 90%after 300 cycles at 2 A g1,exhibiting good cycling stability.As the electrocatalysts for fuel cells,the onset potentials of SPCFs obtained at 800 and 900C are concentrated at 0.863 V,and the higher kinetic current densities at 0.4 V of them are larger than that of PCFs,demonstrating the superior electrocatalytic performance.Due to the synergistic effect of abundant pore channels and S doping,SPCFs electrode exhibits superior electrochemical performances as anode for LIBs and elecctrocatalyst for fuel cells,respectively.Additionally,the oriented conversion of asphalt powder into high-performance electrode material in this work provides a new way for the high value application of asphalt.展开更多
Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure,...Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure, density, and flexural strength of the composites with different Csf contents were investigated. SEM micrographs showed that the Csf distributed in the SSi C matrix homogeneously with some gaps at the fiber/matrix interfaces. The densities of the composites decreased with increasing Csf content. However, the bending strength first increased and then decreased with increasing Csf content, reaching a maximum value of 390 MPa at a Csf content of 5wt%, which was 60 MPa higher than that of SSi C because of the pull-out strengthening mechanism. Notably, Csf was graphitized and damaged during the sintering process because of the high temperature and reaction with boron derived from the sintering additive B4C; this graphitization degraded the fiber strengthening effect.展开更多
基金Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province,Grant/Award Number:LR20E020001Foundation of State Key Laboratory of Coal Conversion,Grant/Award Number:J20-21-909+4 种基金Science and Technology Department of Zhejiang Province,Grant/Award Number:2023C01231National Natural Science Foundation of China,Grant/Award Numbers:52372235,52073252,52002052,22379020,U20A20253,21972127,22279116Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,Grant/Award Number:SKLPEE-KF202206Key Research and Development Project of Science and Technology Department of Sichuan Province,Grant/Award Number:2022YFSY0004Ministry of Education,Grant/Award Number:KFM 202202。
文摘Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.
基金Supported by Innovation and Technology Fund (No.ITP/045/19AP)Commercial Research&Development (CRD) Funding Supported by Hong Kong Productivity Council (No.10008787)。
文摘We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.
基金We gratefully acknowledge financial supports from the Natural Science Founda-tion of Shandong Province (No.ZR2020QE066)Taishan Scholar Project (No.ts201511080)+1 种基金the fellowship of China Postdoctoral Science Foundation (No.2020M672081)Opening Project of State Key Laboratory of Advanced Tech-nology for Float Glass (No.2020KF08).
文摘Monolithic carbon electrodes with robust mechanical integrity and porous architecture are highly desired for capacitive deionization but remain challenging.Owing to the excellent mechanical strength and electroconductivity,commercial carbon fibers cloth demonstrates great potential as high-performance electrodes for ions storage.Despite this,its direct application on capacitive deionization is rarely reported in terms of limited pore structure and natural hydrophobicity.Herein,a powerful metal-organic framework-engaged structural regulation strategy is developed to boost the desalination properties of carbon fibers.The obtained porous carbon fibers features hierarchical porous structure and hydrophilic surface providing abundant ions-accessible sites,and continuous graphitized carbon core ensuring rapid electrons transport.The catalytic-etching mechanism involving oxidation of Co and subsequent carbonthermal reduction is proposed and highly relies on annealing temperature and holding time.When directly evaluated as a current collector-free capacitive deionization electrode,the porous carbon fibers demonstrates much superior desalination capability than pristine carbon fibers,and remarkable cyclic stability up to 20 h with negligible degeneration.Particularly,the PCF-1000 showcases the highest areal salt adsorption capacity of 0.037 mg cm^(−2) among carbon microfibers.Moreover,monolithic porous carbon fibers-carbon nanotubes with increased active sites and good structural integrity by in-situ growth of carbon nanotubes are further fabricated to enhance the desalination performance(0.051 mg cm^(−2)).This work demonstrates the great potential of carbon fibers in constructing high-efficient and robust monolithic electrode for capacitive deionization.
基金Project (2006CB600903) supported by the National Basic Research Program of ChinaProject (2010GK3208) supported by Science and Technology Program of Hunan Province, China
文摘Ni-Fe alloy was electrodeposited on the surface of polyacrylonitrile (PAN)-based carbon fibers, and catalytic graphitization effect of the heat-treated carbon fibers was investigated by X-ray diffractometry and Raman spectra. It is found that Ni-Fe alloy exhibits significant catalytic effect on the graphitization of the carbon fibers at low temperatures. The degree of graphitization of the carbon fibers coated with Ni-Fe alloy (57.91% Fe, mass fraction) reaches 69.0% through heat treatment at 1 250 °C. However, the degree of graphitization of the carbon fibers without Ni-Fe alloy is only 30.1% after being heat-treated at 2 800 °C. The catalytic effect of Ni-Fe alloy on graphitization of carbon fibers is better than that of Ni or Fe at the same temperature, indicating that Ni and Fe elements have synergic catalytic function. Furthermore, Fe content in the Ni-Fe alloy also influences catalytic effect. The catalytic graphitization of Ni-Fe alloy follows the dissolution-precipitation mechanism.
基金the Outstanding Youth Foundation of Hubei Province(No.2004ABB019)Program for New Century Excellent Talents in University,China(No.NCET-05-0665)
文摘The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-based composite is effective for strain/stress self-monitoring. In the indirect tensile test, for a completely conductive asphalt concrete specimen, the piezoresistivity was very weak and slightly positive, which meant the resistivity increase with the increment of tensile strain at all stress/strain amplitudes, with the gage factor as high as 6. The strain self-sensing ability was superior in the case of higher graphite content. However, when the conductive concrete was embedded into common asphalt concrete specimen as a partial structure function, the piezoresistivity was positive at all stress/strain amplitudes and with the gage factor of 13, which was much higher than that of completely conductive specimen. Thus, the strain self-sensing ability was superior when conductive asphalt concrete was taken in as a partial structure function. In the wheel-rolling test, the piezoresistivity was highly positive. At any stress amplitude, the piezoresistivity was strong, with the gage factor as high as 100, which was higher for a stress amplitude of 0.7 MPa than that of 0.5 MPa.
文摘Combined nitric acid oxidation method and polyaniline (PANI)-coated method were applied to modify the surface properties of short carbon fibers (SCF). The electrical and mechanical properties of acrylic coatings with 50 wt pct PANI-coated carbon fiber were investigated by using scanning electron microscope (SEM), UV-Vis spectrophotometer, four-probe method and the coaxial cable method. The results of the pH measurement and XPS (X-ray photoelectron spectroscopy) patterns showed that the oxygen functional groups, such as -OH and -COOH, were attached on the carbon fiber surfaces after oxidation treatment. The XPS analysis of PANl-coated oxidized SCF (PAOSCF) revealed that PANI may bond on the surface of oxidized SCF with chemical bonds. SEM images and surface roughness analyses showed that PANl-coated layer changed the surface morphology. Compared with SCF/acrylic coating, the surface resistivity of PAOSCF/acrylic coating decreased from17.1 to 5.3 Ω/sq and the shielding efficiency (SE) value increased from 1.54 to 23.3 dB.
基金Project(2006CB600903) supported by the National Basic Research Program of China
文摘A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbon fibers in a uniformly dispersed Mo-B sol.The as-treated carbon fibers were then graphitized at 2 400 ℃ for 2 h.The structural changes were characterized by X-ray diffractometry(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and high-resolution transmission electronic microscopy(HRTEM).The results show that much better graphitization can be achieved in the presence of Mo-B,with an interlayer spacing(d002) of 0.335 8 nm and a crystalline size(Lc) of 28 nm.
基金supported by National Natural Science Foundation of China(No.50876077)
文摘Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and catalysis capacity for SO2. The surface properties of the untreated and plasma-treated VACFs were diagnosed by SEM, BET, FTIR, and XPS, and the adsorption capacities of VACFs for SO2 were also compared and discussed. The results show that after the plasma treatment, the external surface of VACFs was etched and became rougher, while the surface area and the total pore volume decreased. FTIR and XPS revealed that nitrogen atoms were introduced onto the VACFs surface and the distribution of functional groups on the VACFs surface was changed remarkably. The adsorption characteristic of SO2 indicates that the plasmatreated VACFs have better adsorption capacity than the original VACFs due to the nitrogen functional groups and new functional groups formed in modification, which is beneficial to the adsorption of SO2.
基金Founded by the National Natural Science Foundation of China(No.50333070)
文摘The impregnation of a special grade PAN precursor,fibers wus carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical stncture and the mechanical properties of precursor fibers thermally stabilized and their resulting carbon fibers u'ere characterized by the combiination use of densities, wide-angle X-ray diffraction (WAXD), X-ray photoelectron speetroscopy (XPS), elemental analysis ( EA ), Fourier traasform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), etc.KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor.fiber, and transform C≡N groups to C≡N ones, meamchile , it can decreuse the crystal .size increuse the orientation index and the costallinity index, furthermore it can increuse the densities of modified PAN precursors and resuhing thermally stabilized fibers. As a result, the carbon fibers developed from modified PAN fibers show an improvement in tensile strength of 31.25 % and an improvement in elongation of 77.78 % , but a decrease of 16. 52% in Young's modulus.
基金supported by the Zijin Program of Zhejiang Universitythe Fundamental Research Funds for the Central Universities (No.2010QNA4003)+1 种基金the Ph.D. Program Foundation of the Ministry of Education of China (No.20100101120024)the Foundation of Education Office of Zhejiang Province, China (No.Y201016484)
文摘A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.
基金Project(S2598445) supported by the Project for Cooperative R&D between Industry,Academy and Research Institute Funded by the Korea Ministry of SME and Startups in 2018
文摘In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.
文摘In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for preparing ACFs. Firstly, the webs were stabilized under different pre-oxidation conditions; secondly, the pre-oxidative fibers were chemically activated by high temperature treatment in nitrogen. Pre-oxidation temperature, heating rate, and treatment time are the main factors on affecting the adsorption performance of the ACFs. Scanning electron microscope ( SEM), differential scanning calorimeter (DSC), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure and property of the pre-oxldatlve fibers, and the dynamic benzene adsorption capacity of benzene of ACFs was measured. The results indicate that the moderate pre-oxidation condition is necessary to prepare the ACFs with better adsorption capacity, and the optimal oxidation conditions are to increase from room temperature to 230 ~C with a heating rate of 0.75 ~C ~ min -1 held at the peak temperature for 30min.
基金National High Technology Research and Development Program,China(No.2008AA05Z305)
文摘Structure characteristics about activated carbon fibers (ACF) and polyimide (P84) doped ACF modified by HNO3 solution were studied to apply in mercury removal in coal-fired flue gases. The P84, which was always used in the non-woven fabric for bag filter, was intermingled with polyacrylonitrile-based ACF (PAN-ACF) in the weight ratio of 1∶1 in order to make the doped ACF with P84 (doped-ACF-P84). Then the doped-ACF-P84 fibers were modified by HNO3 solution. The structure and morphology of doped-ACF-P84 were characterized and compared with those of ACF and doped-ACF-P84 modified by HNO3solution. The results show that the modified doped-ACF-P84 fibers have almost the same pore structure and specific surface area comparing with the original one. However, contrasted with the original PAN-ACF, the doped-ACF-P84 fibers modified by HNO3 solution have more oxygen-containing groups used for mercury removal. In particular, they have more lactone and carboxyl groups.
基金Supported by the National Key R&D Program(2016YFC0204000)the National Natural Science Foundation of China(U1510202)+1 种基金the Jiangsu Province Scientific Supporting Project(BK20170046and BE2015023)
文摘A novel Pt@ZnO nanorod/carbon fiber (NR/CF) with hierarchical structure was prepared by atomic layer deposition combined with hydrothermal synthesis and magnetron sputtering (MS). The morphology of Pt changes from nanoparticle to nanorod bundle with controlled thickness of Pt between 10 and 50 nm. Significantly, with the increase of voltage from 0 to 0.6 V (vs. standard calomel electrode), the prompt photocurrent generated on ZnO NR/CF increases from 0235 to 0.725 mA. Besides, the Pt@ZnO NR/CF exhibited higher electrochemical active surface area (ECSA) value, better methanol oxidation ability and CO tolerance than Pt@CF, which demonstrated the importance of the multifunctional ZnO support. As the thickness of Pt increasing from 10 to 50 rim, the ECSA values were improved proportionally, leading to the improvement of methanol oxidation ability. More importantly, UV radiation increased the density of peak current of Pt@ZnO NR/CF towards methanol oxidation by additional 42.4%, which may be due to the synergy catalysis of UV light and electricity.
基金supported by the National Natural Science Foundation of China under grant No.59783002by the Natural Science Foundation of Henan under grant Nos.200510465008 and 0523021200.
文摘Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.
基金supported by the National Natural Science Foundation of China(U1407110)Anhui Province Key Research and Development Plan(JZ2018AKKG0332)。
文摘2-D nanosheet Cu2O doped CuO coating poly m-phenylenediamine and melamine/graphene/carbon fibers composite(CuxO/MPM/GFs)was firstly fabricated by compound electrochemical method.CuxO/MPM/GFs was successfully used to the recovery of iodide(I-)from salt water by lower potential-aided sorption and desorption processes.The potential-aided recovery of I-at CuxO/MPM/GFs was characterized by FE-SEM,XRD,IR,Raman,XPS,UV-vis and electrochemical techniques in detail.The maximal adsorption capacity of 86.82 mg·g^-1 could be obtained with a pseudo-second-order model at 0.8 V for 210 min in pH 5.0,0.1 mol·L^-1 NaCl,and the process accompanied the generation of CuI,CuO and I5-.The I-could be quickly desorbed from the electrode with a transfer of CuI to Cu2O by cycle voltammetry from-1.0 to 0.5 V for 90 cycles in pH 9.0,0.1 mol·L^-1 KNO3.Thus,CuxO/MPM/GFs was renewable in the continuous electrochemical-adsorption-desorption processes.
基金Funded bythe National Natural Science Foundation of China(No.50333070 and 50273002)
文摘Two different PAN precursors with various comonomers were wet-spun. The properties and structurul changes of PAN precursors and their evolution during preoxidation and carbonization process were characterized by the use of DSC , FTIR and traditional parameters, e g, tensile strength. It is demonstrated that acrylamide( AAM ) is very effective to make the DSC peak be separated compared to methyl acrylate ( MA ). As a result, carbon fibers developed from AAM-contained precursors have a better tenacity compared to those developed from MAcontained ones.
文摘The orientation construction of S-doped porous carbon fibers(SPCFs)is realized by the facile template-directed methodology using asphalt powder as carbon source.The unique fiber-like morphology without destruction can be well duplicated from the template by the developed methodology.MgSO4 fibers serve as both templates and S dopant,realizing the in-situ S doping into carbon frameworks.The effects of different reaction temperatures on the yield and S doping level of SPCFs are investigated.The S doping can not only significantly enhance the electrical conductivity,but also introduce more defects or disorders.As anode material for lithium ion batteries(LIBs),SPCFs electrode delivers better rate capability than undoped PCFs.And the capacity of SPCFs electrode retains around 90%after 300 cycles at 2 A g1,exhibiting good cycling stability.As the electrocatalysts for fuel cells,the onset potentials of SPCFs obtained at 800 and 900C are concentrated at 0.863 V,and the higher kinetic current densities at 0.4 V of them are larger than that of PCFs,demonstrating the superior electrocatalytic performance.Due to the synergistic effect of abundant pore channels and S doping,SPCFs electrode exhibits superior electrochemical performances as anode for LIBs and elecctrocatalyst for fuel cells,respectively.Additionally,the oriented conversion of asphalt powder into high-performance electrode material in this work provides a new way for the high value application of asphalt.
基金financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110006110025)the National Natural Science Foundation of China(No.U1134102)
文摘Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure, density, and flexural strength of the composites with different Csf contents were investigated. SEM micrographs showed that the Csf distributed in the SSi C matrix homogeneously with some gaps at the fiber/matrix interfaces. The densities of the composites decreased with increasing Csf content. However, the bending strength first increased and then decreased with increasing Csf content, reaching a maximum value of 390 MPa at a Csf content of 5wt%, which was 60 MPa higher than that of SSi C because of the pull-out strengthening mechanism. Notably, Csf was graphitized and damaged during the sintering process because of the high temperature and reaction with boron derived from the sintering additive B4C; this graphitization degraded the fiber strengthening effect.