Objective: Carbon ion therapy, a new radiotherapy technology, has shown its remarkable efficacy and potential in cancer treatment, especially in the treatment of refractory tumors. Methods: This paper clarifies the ph...Objective: Carbon ion therapy, a new radiotherapy technology, has shown its remarkable efficacy and potential in cancer treatment, especially in the treatment of refractory tumors. Methods: This paper clarifies the physical basis, technological change, and clinical practice effect of carbon ion therapy, comprehensively discusses the future prospects, and evaluates the clinical application effect. Results: The technology has significantly improved the treatment effectiveness and received a positive response from patients. Conclusion: Carbon ion therapy technology has become a major innovation in the field of cancer treatment. It not only has a profound impact on many current cancer therapy methods but also indicates the application blueprint for a wider range of cancer types in the future, showing a new chapter of medical technology advancement.展开更多
The present study systematically investigated the influence of synthesis conditions(duration,reaction medium,and doping concentration)and formation mechanism of carbon dots(CDs)derived from low-cost and abundant bioma...The present study systematically investigated the influence of synthesis conditions(duration,reaction medium,and doping concentration)and formation mechanism of carbon dots(CDs)derived from low-cost and abundant biomass palm kernel shell(PKS).Surprisingly,the dopant(urea)did not enhance the photoluminescence of CDs as expected,which could be attributed to the low reactivity between the dopant and PKS macromolecules.Variation of synthesis duration from 30 to 120 s clearly indicated the formation mechanism of CDs,involving the stages of dehydration,carbonization,and nucleation.The CDs with the highest photoluminescent intensity and quantum yield was obtained at synthesis duration of 90 s,aligned well with the perfect spherical shape of CDs and the synergistic effects of both surface and carbogenic core conditions.Understanding the formation mechanism could be used to optimize the synthesis of CDs,and hence linked to quantum yield and fluorescent intensity.In terms of application potential,the CDs illuminated well as fluorescent ink and in bacteria cells imaging.The potential of CDs as sensing material has also been proven with the quenching of fluorescence in the presence of metal ions.The linear range for detection of Cu2+ions was 0.1–0.5 mM with a detection limit as low as 0.05 mM.This signifies the potential of CDs fabricated from PKS as a low-cost and easily available material for Cu2+ions detection in aqueous solution.The CDs possessed reasonable photo stability as indicated by its consistent fluorescence level even after exposure to UV radiation for a prolonged period of 180 minutes.Overall,a simple,straightforward,and fast method is developed to synthesis strong blue emissive CDs from green PKS that are potentially suitable for Cu2+ions sensing in real application.展开更多
For both primary and metastatic renal cell carcinoma(RCC),treatment with stereotactic body radiotherapy(SBRT)has found its way into clinical practice.Being a non-invasive outpatient procedure,SBRT requires only a few ...For both primary and metastatic renal cell carcinoma(RCC),treatment with stereotactic body radiotherapy(SBRT)has found its way into clinical practice.Being a non-invasive outpatient procedure,SBRT requires only a few visits to the radiation department and may be of interest for the elderly or,in the case of primary RCC,for patients who are not considered surgical candidates due to technical limitations,medical comorbidities,or in the event that the maintenance of kidney function is compromised.In the treatment landscape of oligometastatic RCC,SBRT shows promise in eradicating metastatic disease and delaying the initiation of systemic treatment.Technical advancements in the planning and administration of radiation treatment and improvements in movement management allow irradiating the tumor and/or metastatic lesions with very high doses in few fractions while maximally sparing the surrounding organs at risk,thus minimizing toxicity.In that context,the increasing availability of particle therapy,such as proton beam radiotherapy or carbon ion radiotherapy,could further optimize the delivery of radiation treatment in order to reduce toxicity and improve outcome.展开更多
文摘Objective: Carbon ion therapy, a new radiotherapy technology, has shown its remarkable efficacy and potential in cancer treatment, especially in the treatment of refractory tumors. Methods: This paper clarifies the physical basis, technological change, and clinical practice effect of carbon ion therapy, comprehensively discusses the future prospects, and evaluates the clinical application effect. Results: The technology has significantly improved the treatment effectiveness and received a positive response from patients. Conclusion: Carbon ion therapy technology has become a major innovation in the field of cancer treatment. It not only has a profound impact on many current cancer therapy methods but also indicates the application blueprint for a wider range of cancer types in the future, showing a new chapter of medical technology advancement.
文摘The present study systematically investigated the influence of synthesis conditions(duration,reaction medium,and doping concentration)and formation mechanism of carbon dots(CDs)derived from low-cost and abundant biomass palm kernel shell(PKS).Surprisingly,the dopant(urea)did not enhance the photoluminescence of CDs as expected,which could be attributed to the low reactivity between the dopant and PKS macromolecules.Variation of synthesis duration from 30 to 120 s clearly indicated the formation mechanism of CDs,involving the stages of dehydration,carbonization,and nucleation.The CDs with the highest photoluminescent intensity and quantum yield was obtained at synthesis duration of 90 s,aligned well with the perfect spherical shape of CDs and the synergistic effects of both surface and carbogenic core conditions.Understanding the formation mechanism could be used to optimize the synthesis of CDs,and hence linked to quantum yield and fluorescent intensity.In terms of application potential,the CDs illuminated well as fluorescent ink and in bacteria cells imaging.The potential of CDs as sensing material has also been proven with the quenching of fluorescence in the presence of metal ions.The linear range for detection of Cu2+ions was 0.1–0.5 mM with a detection limit as low as 0.05 mM.This signifies the potential of CDs fabricated from PKS as a low-cost and easily available material for Cu2+ions detection in aqueous solution.The CDs possessed reasonable photo stability as indicated by its consistent fluorescence level even after exposure to UV radiation for a prolonged period of 180 minutes.Overall,a simple,straightforward,and fast method is developed to synthesis strong blue emissive CDs from green PKS that are potentially suitable for Cu2+ions sensing in real application.
文摘For both primary and metastatic renal cell carcinoma(RCC),treatment with stereotactic body radiotherapy(SBRT)has found its way into clinical practice.Being a non-invasive outpatient procedure,SBRT requires only a few visits to the radiation department and may be of interest for the elderly or,in the case of primary RCC,for patients who are not considered surgical candidates due to technical limitations,medical comorbidities,or in the event that the maintenance of kidney function is compromised.In the treatment landscape of oligometastatic RCC,SBRT shows promise in eradicating metastatic disease and delaying the initiation of systemic treatment.Technical advancements in the planning and administration of radiation treatment and improvements in movement management allow irradiating the tumor and/or metastatic lesions with very high doses in few fractions while maximally sparing the surrounding organs at risk,thus minimizing toxicity.In that context,the increasing availability of particle therapy,such as proton beam radiotherapy or carbon ion radiotherapy,could further optimize the delivery of radiation treatment in order to reduce toxicity and improve outcome.