期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
In situ formation of multiple catalysts for enhancing the hydrogen storage of MgH_(2) by adding porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres 被引量:1
1
作者 Bing Zhang Xiubo Xie +6 位作者 Yukun Wang Chuanxin Hou Xueqin Sun Yuping Zhang Xiaoyang Yang Ronghai Yu Wei Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1227-1238,共12页
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high... MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2). 展开更多
关键词 Mg-based hydrogen storage material Ni_(3)ZnC_(0.7)/Ni@CNT particles Ni loaded carbon nanotubes Multiple catalysts.
下载PDF
Variations in organic carbon loading of surface sediments from the shelf to the slope of the Chukchi Sea,Arctic Ocean 被引量:6
2
作者 LI Zhongqiao WANG Xinyi +3 位作者 JIN Haiyan JI Zhongqiang BAI Youcheng CHEN Jianfang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第8期131-136,共6页
The content of organic carbon (OC) normalized to the specific surface area (SSA) of sediment is widely used to trace variations in OC loading (OC/SSA). This study presents observations of OC/SSA of surface sedim... The content of organic carbon (OC) normalized to the specific surface area (SSA) of sediment is widely used to trace variations in OC loading (OC/SSA). This study presents observations of OC/SSA of surface sediments collected in the Chukchi Sea, a typical Arctic marginal sea. Shelf sediments exhibit much higher OC/SSA values than slope sediments in the study area. Compared with OC/SSA values reported from the East Siberian Shelf and Mackenzie River, the slope sediments possess lower OC loading. This abrupt decrease in OC/SSA is mostly related to the lower primary production on slope as well as possible oxidization processes. The results of linear regression analysis between OC and SSA indicate a sedimentary source rock for the OC in the Chukchi Sea sediments. Moreover, shelf sediments with low SSA possess a larger rock OC fraction than slope sediments do. The dataset of the present study enables a more thorough understanding of regional OC cycling in the Chukchi Sea. 展开更多
关键词 Chukchi Sea ARCTIC surface sediments organic carbon loading carbon cycle
下载PDF
Classification of Foot Pressure Images Using Machine Learning Algorithm
3
作者 P.Ramya B.Padmapriya S.Poornachandra 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期187-196,共10页
Arthritis is an acute systemic disease of a joint accompanied by pain.In developed countries,it mainly causes disability among people over 50 years of age.Rheumatoid Arthritis is a type of arthritis that occurs common... Arthritis is an acute systemic disease of a joint accompanied by pain.In developed countries,it mainly causes disability among people over 50 years of age.Rheumatoid Arthritis is a type of arthritis that occurs commonly among elders.The incidence of arthritis is higher in females than in males.There is no permanent diagnosis method for arthritis,but if it was identified in the early stages based on the foot pressure,it can be diagnosed before attaining the critical stage of Rheumatoid Arthritis.The analysis and study of arthritis patients were done using design thinking methodology.Design thinking is a problem-solving methodology that is used tofind a solution for the identification of the early stage of arthritis.This process consists offive stages follows Empathy,Define,Ideate,Prototype,and Testing.To define the problem statement,the Empathy was done with the arthritis patients to know the difficulties faced by them.This paper proposes a measurement technique of early measurement of arthritis using a non-invasive technique.It helps us to detect arthritis using a foot pressure pad that was designed with piezoresistive material and the feature classification was done using Weka. 展开更多
关键词 Piezoresistive material velostat carbon loaded piezo resistivefilm machine learning algorithm SVM MLP classification design thinking
下载PDF
Highly efficient P uptake by Fe3O4 loaded amorphous Zr-La (carbonate) oxides: Electrostatic attraction, inner-sphere complexation and oxygen vacancies acceleration effect 被引量:2
4
作者 Chenyang Liu Yili Wang +5 位作者 Xiaolin Li Junyi Li Shuoxun Dong Haotian Hao Yao Tong Yanqing Zhou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第10期18-29,共12页
Bimetallic oxides composites have received an increasing attention as promising adsorbents for aqueous phosphate (P) removal in recent years. In this study, a novel magnetic composite MZLCO was prepared by hybridizing... Bimetallic oxides composites have received an increasing attention as promising adsorbents for aqueous phosphate (P) removal in recent years. In this study, a novel magnetic composite MZLCO was prepared by hybridizing amorphous Zr-La (carbonate) oxides (ZLCO) with nano-FeOthrough a one-pot solvothermal method for efficient phosphate adsorption. Our optimum sample of MZLCO-45 exhibited a high Langmuir maximum adsorption capacity of 96.16 mg P/g and performed well even at low phosphate concentration. The phosphate adsorption kinetics by MZLCO-45 fitted well with the pseudo-second-order model, and the adsorption capacity could reach 79% of the ultimate value within the first 60 min. The phosphate adsorption process was highly p H-dependent, and MZLCO-45 performed well over a wide p H range of 2.0-8.0. Moreover, MZLCO-45 showed a strong selectivity to phosphate in the presence of competing ions (Cl^(-), NO_(3)^(-), SO_(4)^(2-), HCO_(3)^(-), Ca^(2+), and Mg^(2+)) and a good reusability using the eluent of Na OH/Na Cl mixture, then 64% adsorption capacity remained after ten recycles. The initial 2.0 mg P/L in municipal wastewater and surface water could be efficiently reduced to below 0.1mg P/L by 0.07 g/L MZLCO-45, and the phosphate removal efficiencies were 95.7% and 96.21%, respectively. Phosphate adsorption mechanisms by MZLCO-45 could be attributed to electrostatic attraction and the inner-sphere complexation via ligand exchange forming Zr/La-O-P, -OH and CO_(3)^(2-)groups on MZLCO-45 surface played important roles in the ligand exchange process. The existence of oxygen vacancies could accelerate the phosphate absorption rate of the MZLCO-45 composites. 展开更多
关键词 Fe3O4 loaded amorphous Zr-La(carbonate)oxides Phosphate adsorption performance Regeneration Mechanism Real water treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部