This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This t...This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This tool is open to all users to carry out their own analyses,but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made,and ultimately to improve the efficiency of CO_(2)conversion by plasma-catalysis.The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO_(2)conversion processes,be it methanation,dry reforming of methane,methanolisation,or others.As a result of this rapid increase,there is a need for a set of standard procedures to rigorously compare performances of different systems.However,this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures.Fortunately however,the accumulated data within the CO_(2)plasma-catalysis community has become large enough to warrant so-called“big data”studies more familiar in the fields of medicine and the social sciences.To enable comparisons between multiple data sets and make future research more effective,this work proposes the first database on CO_(2)conversion performances by plasma-catalysis open to the whole community.This database has been initiated in the framework of a H_(2)0_(2)0 European project and is called the“PIONEER Data Base”.The database gathers a large amount of CO_(2)conversion performance data such as conversion rate,energy efficiency,and selectivity for numerous plasma sources coupled with or without a catalyst.Each data set is associated with metadata describing the gas mixture,the plasma source,the nature of the catalyst,and the form of coupling with the plasma.Beyond the database itself,a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public.The simple and fast visualisation of the state of the art puts new results into context,identifies literal gaps in data,and consequently points towards promising research routes.More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling.Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO_(2)plasma-catalytic studies.Finally,the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.展开更多
Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw d...Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw decomposition in three fields, i.e., cropland, peach orchard and vineyard. Straw decomposition was monitored for 360 d using a mesh-bag method. Soil microbial metabolic activity and functional diversity were measured using the Biolog-Eco system. In all three fields, dried straws with a smaller size decomposed faster than their fresh counterparts that had a larger size. Dried corn straw decomposed slower than dried soybean straw in the early and middle stages, while the reverse trend was found in the late stage. The cropland showed the highest increase in microbial metabolic activity during the straw decomposition, whereas the peach orchard showed the lowest. There was no significant change in the species dominance or evenness of soil microbial communities during the straw decomposition. However, the species richness fluctuated significantly, with the peach orchard showing the highest richness and the cropland the lowest. With different carbon sources, the peach orchard utilised carbon the most, followed by the cropland and the vineyard. In all three fields, carbon was utilized in following decreasing order: saccharides〉amino acids〉polymers〉polyamines〉carboxylic acids〉aromatic compounds. In terms of carbon-source utilization, soil microbial communities in the peach orchard were less stable than those in the cropland. The metabolic activity and species dominance of soil microbial communities were negatively correlated with the straw residual percentage. Refractory components were primarily accumulated in the late stages, thus slowing down the straw decomposition. The results showed that dried and crushed corn straw was better for application in long-term fields. The diversity of soil microbial communities was more stable in cropland than in orchards during the straw decomposition.展开更多
Carbon dioxide capture and reduction(CCR)process emerges as an efficient catalytic strategy for CO_(2)capture and conversion to valuable chemicals.K-promoted Cu/Al_(2)O_(3)catalysts exhibited promising CO_(2)capture e...Carbon dioxide capture and reduction(CCR)process emerges as an efficient catalytic strategy for CO_(2)capture and conversion to valuable chemicals.K-promoted Cu/Al_(2)O_(3)catalysts exhibited promising CO_(2)capture efficiency and highly selective conversion to syngas(CO+H_(2)).The dynamic nature of the Cu-K system at reaction conditions complicates the identification of the catalytically active phase and surface sites.The present work aims at more precise understanding of the roles of the potassium and copper and the contribution of the metal oxide support.Whileγ-Al_(2)O_(3)guarantees high dispersion and destabilisation of the potassium phase,potassium and copper act synergistically to remove CO_(2)from diluted streams and promote fast regeneration of the active phase for CO_(2)capture releasing CO while passing H_(2).A temperature of 350℃is found necessary to activate H_(2)dissociation and generate the active sites for CO_(2)capture.The effects of synthesis parameters on the CCR activity are also described by combination of ex-situ characterisation of the materials and catalytic testing.展开更多
One simple and fast way to manufacture a useful product from CO2 is to capture the gas by, and then carry out electrolysis in molten alkali metal carbonates. Carbon electro-deposition in molten Li2CO3-Na2CO3- KaCO3 (...One simple and fast way to manufacture a useful product from CO2 is to capture the gas by, and then carry out electrolysis in molten alkali metal carbonates. Carbon electro-deposition in molten Li2CO3-Na2CO3- KaCO3 (molar ratio: 43.5:31.5:25.0) has been widely reported in literature. However, studies in each of the individual alkali metal carbonates either have received less attention or are simply lacking in literature. Electrochem- ical studies of these molten carbonates are important to understand their underlying processes and reactions during the electrolysis. In this work, cyclic voltammograms (CVs) were recorded in each of the above-mentioned molten alkali carbonate salts using a 0.25 mm diameter Pt wire working electrode. In molten Na2CO3 and K2CO3, the main cathodic reaction was likely the formation of alkali metal, while that in Li2CO3 was carbon deposition. The results also suggest that other competing reactions such as CO and alkali metal carbide formation are possible as well in dif- ferent molten salts. On the CVs, the anodic current peaks observed are mostly associated with the oxidation of cathodic products. Flake/ring/sheet-like structures and quasi-spherical particles were observed in the produced carbon. The morphology of the carbon contained both amorphous and graphitic structures, which varied with different electrolysis variables.展开更多
基金funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.813393partially funded by the Portuguese FCT-Funda??o para a Ciência e a Tecnologia,under projects UIDB/50010/2020,UIDP/50010/2020 and PTDC/FIS-PLA/1616/2021。
文摘This paper brings the comparison of performances of CO_(2)conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field,organised in an open access online database.This tool is open to all users to carry out their own analyses,but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made,and ultimately to improve the efficiency of CO_(2)conversion by plasma-catalysis.The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO_(2)conversion processes,be it methanation,dry reforming of methane,methanolisation,or others.As a result of this rapid increase,there is a need for a set of standard procedures to rigorously compare performances of different systems.However,this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures.Fortunately however,the accumulated data within the CO_(2)plasma-catalysis community has become large enough to warrant so-called“big data”studies more familiar in the fields of medicine and the social sciences.To enable comparisons between multiple data sets and make future research more effective,this work proposes the first database on CO_(2)conversion performances by plasma-catalysis open to the whole community.This database has been initiated in the framework of a H_(2)0_(2)0 European project and is called the“PIONEER Data Base”.The database gathers a large amount of CO_(2)conversion performance data such as conversion rate,energy efficiency,and selectivity for numerous plasma sources coupled with or without a catalyst.Each data set is associated with metadata describing the gas mixture,the plasma source,the nature of the catalyst,and the form of coupling with the plasma.Beyond the database itself,a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public.The simple and fast visualisation of the state of the art puts new results into context,identifies literal gaps in data,and consequently points towards promising research routes.More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling.Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO_(2)plasma-catalytic studies.Finally,the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool.
基金supported by the Soil Erosion and Dryland Farming on Loess Plateau of the State Key Laboratory of Chinese Academy of Sciences (K318009902-1310) the Shaanxi Province Innovative Engineering Project Coordinator (2011K01-48)
文摘Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw decomposition in three fields, i.e., cropland, peach orchard and vineyard. Straw decomposition was monitored for 360 d using a mesh-bag method. Soil microbial metabolic activity and functional diversity were measured using the Biolog-Eco system. In all three fields, dried straws with a smaller size decomposed faster than their fresh counterparts that had a larger size. Dried corn straw decomposed slower than dried soybean straw in the early and middle stages, while the reverse trend was found in the late stage. The cropland showed the highest increase in microbial metabolic activity during the straw decomposition, whereas the peach orchard showed the lowest. There was no significant change in the species dominance or evenness of soil microbial communities during the straw decomposition. However, the species richness fluctuated significantly, with the peach orchard showing the highest richness and the cropland the lowest. With different carbon sources, the peach orchard utilised carbon the most, followed by the cropland and the vineyard. In all three fields, carbon was utilized in following decreasing order: saccharides〉amino acids〉polymers〉polyamines〉carboxylic acids〉aromatic compounds. In terms of carbon-source utilization, soil microbial communities in the peach orchard were less stable than those in the cropland. The metabolic activity and species dominance of soil microbial communities were negatively correlated with the straw residual percentage. Refractory components were primarily accumulated in the late stages, thus slowing down the straw decomposition. The results showed that dried and crushed corn straw was better for application in long-term fields. The diversity of soil microbial communities was more stable in cropland than in orchards during the straw decomposition.
文摘Carbon dioxide capture and reduction(CCR)process emerges as an efficient catalytic strategy for CO_(2)capture and conversion to valuable chemicals.K-promoted Cu/Al_(2)O_(3)catalysts exhibited promising CO_(2)capture efficiency and highly selective conversion to syngas(CO+H_(2)).The dynamic nature of the Cu-K system at reaction conditions complicates the identification of the catalytically active phase and surface sites.The present work aims at more precise understanding of the roles of the potassium and copper and the contribution of the metal oxide support.Whileγ-Al_(2)O_(3)guarantees high dispersion and destabilisation of the potassium phase,potassium and copper act synergistically to remove CO_(2)from diluted streams and promote fast regeneration of the active phase for CO_(2)capture releasing CO while passing H_(2).A temperature of 350℃is found necessary to activate H_(2)dissociation and generate the active sites for CO_(2)capture.The effects of synthesis parameters on the CCR activity are also described by combination of ex-situ characterisation of the materials and catalytic testing.
文摘One simple and fast way to manufacture a useful product from CO2 is to capture the gas by, and then carry out electrolysis in molten alkali metal carbonates. Carbon electro-deposition in molten Li2CO3-Na2CO3- KaCO3 (molar ratio: 43.5:31.5:25.0) has been widely reported in literature. However, studies in each of the individual alkali metal carbonates either have received less attention or are simply lacking in literature. Electrochem- ical studies of these molten carbonates are important to understand their underlying processes and reactions during the electrolysis. In this work, cyclic voltammograms (CVs) were recorded in each of the above-mentioned molten alkali carbonate salts using a 0.25 mm diameter Pt wire working electrode. In molten Na2CO3 and K2CO3, the main cathodic reaction was likely the formation of alkali metal, while that in Li2CO3 was carbon deposition. The results also suggest that other competing reactions such as CO and alkali metal carbide formation are possible as well in dif- ferent molten salts. On the CVs, the anodic current peaks observed are mostly associated with the oxidation of cathodic products. Flake/ring/sheet-like structures and quasi-spherical particles were observed in the produced carbon. The morphology of the carbon contained both amorphous and graphitic structures, which varied with different electrolysis variables.