期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
1
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system carbon nitrogen phosphorus tea quality path analysis
下载PDF
Effects of tree size and organ age on variations in carbon,nitrogen,and phosphorus stoichiometry in Pinus koraiensis
2
作者 Yanjun Wang Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期155-165,共11页
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr... Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations. 展开更多
关键词 Tree size Organ age(or root order) carbon(C) nitrogen(N) phosphorus(P) Pinus koraiensis
下载PDF
Carbon,nitrogen and phosphorus stoichiometry in Pinus tabulaeformis forest ecosystems in warm temperate Shanxi Province,north China 被引量:7
3
作者 Ning Wang Fengzhen Fu +1 位作者 Baitian Wang Ruijun Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第6期1665-1673,共9页
Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the recipr... Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued. 展开更多
关键词 Pinus tabulaeformis Carr. Forest ecosystem Content of carbon nitrogen and phosphorus Ecological stoichiometry Warm temperate zone China
下载PDF
Carbon,nitrogen and phosphorus coupling relationships and their influencing factors in the critical zone of Dongting Lake wetlands,China
4
作者 Yan-hao Wu Nian-qing Zhou +2 位作者 Zi-jun Wu Shuai-shuai Lu Yi Cai 《Journal of Groundwater Science and Engineering》 2022年第3期250-266,共17页
Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling me... Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling mechanism of carbon(C),nitrogen(N)and phosphorus(P)migration in the critical zone of lake wetland,this paper studies the natural wetland of Dongting Lake area,through measuring and analysing the C,N and P contents in the wetland soil and groundwater.Methods of Pearson correlation,non-linear regression and machine learning were employed to analyse the influencing factors,and to explore the coupling patterns of the C,N and P in both soils and groundwater,with data derived from soil and water samples collected from the wetland critical zone.The results show that the mean values of organic carbon(TOC),total nitrogen(TN)and total phosphorus(TP)in groundwater are 1.59 mg/L,4.19 mg/L and 0.5 mg/L,respectively,while the mean values of C,N and P in the soils are 18.05 g/kg,0.86 g/kg and 0.52 g/kg.The results also show that the TOC,TN and TP in the groundwater are driven by a variety of environmental factors.However,the concentrations of C,N and P in the soils are mainly related to vegetation abundance and species which influence each other.In addition,the fitted curves of wetland soil C-N and C-P appear to follow the power function and S-shaped curve,respectively.In order to establish a multivariate regression model,the soil N and P contents were used as the input parameters and the soil C content used as the output one.By comparing the prediction effects of machine learning and nonlinear regression modelling,the results show that coupled relationship equation for the C,N and P contents is highly reliable.Future modelling of the coupled soil and groundwater elemental cycles needs to consider the complexity of hydrogeological conditions and to explore the quantitative relationships among the influencing factors and chemical constituents. 展开更多
关键词 Dongting Lake Wetland critical zone carbon nitrogen and phosphorus Driving factors Coupling mechanisms
下载PDF
Cu_(3)P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage 被引量:3
5
作者 Yuanxing Yun Baojuan Xi +5 位作者 Yu Gu Fang Tian Weihua Chen Jinkui Feng Yitai Qian Shenglin Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期339-347,I0009,共10页
Immobilizing primary electroactive nanomaterials in porous carbon matrix is an effective approach for boosting the electrochemical performance of potassium-ion batteries (PIBs) because of the synergy among functional ... Immobilizing primary electroactive nanomaterials in porous carbon matrix is an effective approach for boosting the electrochemical performance of potassium-ion batteries (PIBs) because of the synergy among functional components. Herein, an integrated hybrid architecture composed of ultrathin Cu_(3)P nanoparticles (~20 nm) confined in porous carbon nanosheets (Cu_(3)P⊂NPCSs) as a new anode material for PIBs is synthesized through a rational self-designed self-templating strategy. Benefiting from the unique structural advantages including more active heterointerfacial sites, intimate and stable electrical contact, effectively relieved volume change, and rapid K^(+) ion migration, the Cu_(3)P⊂NPCSs indicate excellent potassium-storage performance involving high reversible capacity, exceptional rate capability, and cycling stability. Moreover, the strong adsorption of K^(+) ions and fast potassium-ion reaction kinetics in Cu_(3)P⊂NPCSs is verified by the theoretical calculation investigation. Noted, the intercalation mechanism of Cu_(3)P to store potassium ions is, for the first time, clearly confirmed during the electrochemical process by a series of advanced characterization techniques. 展开更多
关键词 Cu_(3)P Potassium-ion batteries nitrogen/phosphorus dual-doped porous carbon sheets Intercalation mechanism Heterointerface
下载PDF
Effects of Nitrogen Application Rate to Late Rice on Greenhouse Gas Emissions and Soil Carbon Pool During the Growing Season of Winter Chinese Milk vetch
6
作者 Yanqin MA Guoqin HUANG 《Agricultural Biotechnology》 CAS 2018年第6期139-145,共7页
It is of important referential values for the further understanding of the effects of fertilization on greenhouse gas emissions and the effects of winter green manure on soil carbon pool to study the effects of fertil... It is of important referential values for the further understanding of the effects of fertilization on greenhouse gas emissions and the effects of winter green manure on soil carbon pool to study the effects of fertilization on the greenhouse gas emissions and soil carbon pool during the growing season of winter Chinese milk vetch in the process of rice cultivation.This study investigated the effects of nitrogen application in late rice season on the yield of the succeeding Chinese milk vetch and greenhouse gas emissions as well as the soil carbon pool characteristics after the winter planting of Chinese milk vetch with the winter idling of no nitrogen application as the control.The results showed that the yield of Chinese milk vetch was the highest under the nitrogen application of 225 kg/hm^2 in the late rice season,reaching up to 18 388.97 kg/hm^2,which was significantly different from other treatments( P <0.05).Nitrogen application in late rice season increased the emissions of N_2 O,CH_4,CO_2 and global warming potential( GWP) in the growing season of Chinese milk vetch.Compared with the winter idling treatment,winter planting of Chinese milk vetch significantly increased the soil organic carbon and soil carbon pool management index.The yield of Chinese milk vetch was significantly positively correlated with N_2O and CH_4 emissions( P < 0.05),while it presented extremely significant positive correlations with CO_2 emissions,GWP,active organic carbon,and carbon pool management index( P < 0.01).Nitrogen application in the late rice season increased the emissions of N_2 O,CH_4,CO_2,and enhanced the greenhouse gas emission potential during the growing season of Chinese milk vetch.Therefore,without reducing the yield of rice,reducing the amount of nitrogen fertilizer in rice could reduce the greenhouse gas emissions in the growing season of succeeding Chinese milk vetch. 展开更多
关键词 nitrogen application CHINESE MILK VETCH GREENHOUSE gas emission Soil carbon POOL
下载PDF
Soil Organic Carbon and Nutrients along an Alpine Grassland Transect across Northern Tibet 被引量:9
7
作者 CAO Ying-zi WANG Xiao-dan +2 位作者 LU Xu-yang YAN Yan FAN Ji-hui 《Journal of Mountain Science》 SCIE CSCD 2013年第4期564-573,共10页
Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical... Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-3o cm) showed no significant differences, while AP content in top soft (0-15 cm) was significantly higher than that in sub-top soil (15-30cm). SOC content was correlated positively with TN and TP content (r = 0.901and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks. 展开更多
关键词 Soil organic carbon Total nitrogen Total phosphorus Particle size distribution Alpinegrassland TIBET
下载PDF
Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation 被引量:18
8
作者 Cheng-Zhi Ke Fang Liu +6 位作者 Zhi-Ming Zheng He-He Zhang Meng-Ting Cai Miao Li Qi-Zhang Yan Hui-Xin Chen Qiao-Bao Zhang 《Rare Metals》 SCIE EI CAS CSCD 2021年第6期1347-1356,共10页
Silicon(Si)is a promising anode candidate for next-generation lithium-ion batteries(LIBs),but it suffers from poor electronic conductivity and dramatic volume variation during cycling,which poses a critical challenge ... Silicon(Si)is a promising anode candidate for next-generation lithium-ion batteries(LIBs),but it suffers from poor electronic conductivity and dramatic volume variation during cycling,which poses a critical challenge for stable battery operation.To mitigate these issues simultaneously,we propose a"double carbon synergistic encapsulation"strategy,namely thin carbon shell and nitrogen/phosphorus co-doped two-dimensional(2D)carbon sheet dual encapsulate Si nanoparticles(denoted as 2D NPC/C@Si).This double carbon structure can serve as a conductive medium and buffer matrix to accommodate the volume expansion of Si nanoparticles and enable fast electron/ion transport,which promotes the formation of a stable solid electrolyte interphase film during cycling.Through structural advantages,the resulting 2 D NPC/C@Si electrode demonstrates a high reversible capacity of592 mAh·g^(-1) at 0.2 A·g^(-1) with 90.5%excellent capacity retention after 100 cycles,outstanding rate capability(148 mAh·g^(-1) at 8 A·g^(-1)),and superior long-term cycling stability(326 mAh·g^(-1) at 1 A·g^(-1) for 500 cycles,86%capacity retention).Our findings elucidate the development of high-performance Si@C composite anodes for advanced LTBs. 展开更多
关键词 Silicon@carbon composites Anode nitrogen/phosphorus co-doped carbon Lithium-ion battery
原文传递
Phosphorus/nitrogen co-doped hollow carbon fibers enabling high-rate potassium storage 被引量:4
9
作者 Yu Zhou Shuang Tian +6 位作者 Min-Yu Jia Pei-Bo Gao Guang-Chao Yin Xiao-Mei Wang Jing-Lin Mu Jin Zhou Tong Zhou 《Rare Metals》 SCIE EI CAS CSCD 2023年第8期2622-2632,共11页
Potassium-ion hybrid capacitors(PIHCs)reconcile the advantages of batteries and supercapacitors,exhibiting both good energy density and high-power density.However,the low-rate performance and poor cycle stability of b... Potassium-ion hybrid capacitors(PIHCs)reconcile the advantages of batteries and supercapacitors,exhibiting both good energy density and high-power density.However,the low-rate performance and poor cycle stability of battery-type anodes hinder their practical application.Herein,phosphorus/nitrogen co-doped hollow carbon fibers(P-HCNFs)are prepared by a facile template method.The stable grape-like structure with continuous and interconnected cavity structure is an ideal scaffold for shortening the ion transport and relieving volume expansion,while the introduction of P atoms and intrinsic N atoms can create abundant extrinsic/intrinsic defects and additional active sites,reducing the K+diffusion barrier and improving the capacitive-controlled capacity.The P-HCNFs delivers a high specific capacity of 310 mAh·g^(-1)at 0.1 A·g^(-1)with remarkable ultra-high-rate performance(140 mAh·g^(-1)at 50 A·g^(-1))and retains an impressive capacity retention of 87%after 10,000 cycles at 10 A·g^(-1).As expected,the as-assembled PIHCs present a high energy density(115.8 Wh·kg^(-1)at 378.0 W·kg^(-1))and excellent capacity retention of 91%after 20,000 cycles.This work not only shows great potential for utilizing heteroatom-doping and structural design strategies to boost potassium storage,but also paves the way for advancing the practicality of high-energy PIHCs devices. 展开更多
关键词 Potassium-ion hybrid capacitors(PIHCs) Hollow carbon anodes phosphorus/nitrogen cooping High-rate performance
原文传递
Non-climate environmental factors matter to Holocene dynamics of soil organic carbon and nitrogen in an alpine permafrost wetland,Qinghai‒Tibet Plateau 被引量:1
10
作者 Qing-Feng WANG Hui-Jun JIN +3 位作者 Cui-Cui MU Xiao-Dong WU Lin ZHAO Qing-Bai WU 《Advances in Climate Change Research》 SCIE CSCD 2023年第2期213-225,共13页
Studies on the responses of soil organic carbon(SOC)and nitrogen dynamics to Holocene climate and environment in permafrost peatlands and/or wetlands might serve as analogues for future scenarios,and they can help pre... Studies on the responses of soil organic carbon(SOC)and nitrogen dynamics to Holocene climate and environment in permafrost peatlands and/or wetlands might serve as analogues for future scenarios,and they can help predict the fate of the frozen SOC and nitrogen under a warming climate.To date,little is known about these issues on the Qinghai‒Tibet Plateau(QTP).Here,we investigated the accumulations of SOC and nitrogen in a permafrost wetland on the northeastern QTP,and analyzed their links with Holocene climatic and environmental changes.In order to do so,we studied grain size,soil organic matter,SOC,and nitrogen contents,bulk density,geochemical parameters,and the accelerator mass spectrometry(AMS)^(14)C dating of the 216-cm-deep wetland profile.SOC and nitrogen contents revealed a general uptrend over last 7300 years.SOC stocks for depths of 0-100 and 0-200 cm were 50.1 and 79.0 kgC m^(-2),respectively,and nitrogen stocks for the same depths were 4.3 and 6.6 kgN m^(-2),respectively.Overall,a cooling and drying trend for regional climate over last 7300 years was inferred from the declining chemical weathering and humidity index.Meanwhile,SOC and nitrogen accumulated rapidly in 1110e720 BP,while apparent accumulation rates of SOC and nitrogen were much lower during the other periods of the last 7300 years.Consequently,we proposed a probable conceptual framework for the concordant development of syngenetic permafrost and SOC and nitrogen accumulations in alpine permafrost wetlands.This indicates that,apart from controls of climate,non-climate environmental factors,such as dust deposition and site hydrology,matter to SOC and nitrogen accumulations in permafrost wetlands.We emphasized that environmental changes driven by climate change have important impacts on SOC and nitrogen accumulations in alpine permafrost wetlands.This study could provide data support for regional and global estimates of SOC and nitrogen pools and for global models on carbon‒climate interactions that take into account of alpine permafrost wetlands on the northeastern QTP at mid-latitudes. 展开更多
关键词 Syngenetic permafrost in alpine wetland Soil organic carbon pool nitrogen accumulation Chemical weathering Dust deposition HOLOCENE
原文传递
Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium–sulfur batteries 被引量:12
11
作者 Juan Ren Yibei Zhou +3 位作者 Huali Wu Fengyu Xie Chenggang Xu Dunmin Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第3期121-131,共11页
Biomass-derived carbon materials have aroused widespread concern as host material of sulfur to enhance electrochemical performances for lithium–sulfur batteries. Herein, goat hair, as a low-cost and eco-friendly prec... Biomass-derived carbon materials have aroused widespread concern as host material of sulfur to enhance electrochemical performances for lithium–sulfur batteries. Herein, goat hair, as a low-cost and eco-friendly precursor, is employed to fabricate cauliflower-like in-situ nitrogen, oxygen and phosphorus tri-doped porous biomass carbon(NOPC) by a facile activation with H_3PO_4 and carbonization process.The morphology and microstructure of NOPC can be readily tuned by altering pyrolysis temperature. The as-prepared NOPC matrix material carbonized at 600 °C possesses 3D hierarchical porous structure, high specific surface area(535.352 m^2 g^(-1)), and appropriate pore size and pore size distribution. Encapsulating sulfur into the NOPC depends on a stem-melting technology as cathode materials of Li–S batteries. Due to the synergistic effect of special physical structure and inherent tri-doping of N, O and P, electrons and ions transfer and utilization of active sulfur in the materials are improved, and the shuttle behaviors of soluble lithium polysulfides are also mitigated. Consequently, the S/NOPC-600 composite exhibits excellent electrochemical performance, giving a high initial discharge capacity of 1185 mA h g^(-1) at 0.05 C and maintaining a relatively considerable capacity of 489 m A h g^(-1) at 0.2 C after 300 cycles. Our work shows that a promising candidate for cathode material of Li–S batteries can be synthesized using low-cost and renewable biomass materials by a facile process. 展开更多
关键词 Biomass-derived carbon materials GOAT HAIR nitrogen Oxygen and phosphorus tri-doping LITHIUM SULFUR BATTERIES
下载PDF
Allocation strategies of carbon,nitrogen and phosphorus following a gradient of wildfire severities 被引量:2
12
作者 Zhaopeng Song Zhaolei Li +1 位作者 Yiqi Luo Yanhong Liu 《Journal of Plant Ecology》 SCIE CSCD 2022年第2期347-358,共12页
Wildfire is crucial in the regulation of nutrient allocation during the succession of boreal forests.However,the allocation strategies of carbon(C),nitrogen(N)and phosphorus(P)between leaves and fine roots in response... Wildfire is crucial in the regulation of nutrient allocation during the succession of boreal forests.However,the allocation strategies of carbon(C),nitrogen(N)and phosphorus(P)between leaves and fine roots in response to wildfire severities remain poorly studied.We aimed to explore the allocation strategies of C,N and P between leaves and fine roots among different fire severities.We selected four wildfire severities(unburned,low,moderate and high severity)after 10 years recovery in the Great Xing’an Mountains,northeast China,and compared C,N and P concentrations in leaves and fine roots of all species among fire severities using stoichiometry theory and allometric growth equations.Compared with unburned treatment,C concentrations in leaves and fine roots increased at low severity,and leaf N concentration was the greatest at high severity,but the lowest fine root N concentration occurred at high severity.Plant nutrient utilization tended to be P-limited at high fire severity according to the mean value of N:P ratio>16.More importantly,C,N and P allocation strategies between fine roots and leaves changed from allometry to isometry with increasing fire severities,which showed more elements allocated to leaves than to fine roots with increasing fire severities.These changes in patterns suggest that the allocation strategies of elements between leaves and fine roots are of imbalance with the wildfire severity.This study deepens our understanding of nutrient dynamics between plant and soil in ecosystem succession. 展开更多
关键词 allocation strategy carbon nitrogen and phosphorus leaves and fine roots wildfire severity
原文传递
Nitrogen-,phosphorus-doped carbon-carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution 被引量:11
13
作者 Xia-Xia Li Pei-Yao Zhu +3 位作者 Qing Li Yu-Xia Xu Yan Zhao Huan Pang 《Rare Metals》 SCIE EI CAS CSCD 2020年第6期680-687,共8页
Here,N-and P-doped carbon-carbon nanotube CoP(NPC-CNTs-CoP)nanoparticles dodecahedra are achieved by multistep calcination of the Zn-doped zeolitic imidazolate framework ZIF-67 precursor(ZnCo-ZIF).In the structures,th... Here,N-and P-doped carbon-carbon nanotube CoP(NPC-CNTs-CoP)nanoparticles dodecahedra are achieved by multistep calcination of the Zn-doped zeolitic imidazolate framework ZIF-67 precursor(ZnCo-ZIF).In the structures,the presence of N and P atoms,abundant CNTs and the CoP nanoparticles can enhance electrochemical activity and promote the structural stability of materials.As the temperature increases,the Zn contents gradually reduce to zero,which provides more active sites for electrochemical testing.Furthermore,the high specific surface area and microporous behavior of NPC-CNTsCoP-9 make it excellent in electrocatalytic testing.NPCCNTs-CoP-9 shows a low overpotential of 224 mV at10 mA·cm^-2 in 1.0 mol·L^-1 KOH solution.The strategy of zeolitic imidazole framework-derived transition metal phosphides will provide a new sight for developing energy conversion materials. 展开更多
关键词 nitrogen phosphorus carbon carbon nanotube COP Oxygen evolution
原文传递
Twice-split phosphorus application alleviates low-temperature impacts on wheat by improved spikelet development and setting 被引量:1
14
作者 XU Hui HOU Kuo-yang +7 位作者 FANG Hao LIU Qian-qian WU Qiu LIN Fei-fei DENG Rui ZHANG Lin-jie CHEN Xiang LI Jin-cai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3667-3680,共14页
Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the an... Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the anther interval stage)has resulted in significant yield losses of winter wheat.This study attempts to develop an economical,feasible,and efficient cultivation technique for improving the low-temperature(LT)resistance of wheat by exploring the effects of twice-split phosphorus application(TSPA)on wheat antioxidant characteristics and carbon and nitrogen metabolism physiology under LT treatment at the anther interval stage using Yannong 19 as the experimental material.The treatments consisted of traditional phosphorus application and TSPA,followed by a-4℃ LT treatment and natural temperature(NT)control at the anther interval stage.Our analyses showed that,compared with the traditional application,the TSPA increased the net photosynthetic rate(P_(n)),stomatal conductance(Gs),and transpiration rate(T_(r))of leaves and reduced the intercellular carbon dioxide concentration(C_(i)).The activity of carbon and nitrogen metabolism enzymes in the young wheat spikes was also increased by the TSPA,which promoted the accumulation of soluble sugar(SS),sucrose(SUC),soluble protein(SP),and proline(Pro)in young wheat spike and reduced the toxicity of malondialdehyde(MDA).Due to the improved organic nutrition for reproductive development,the young wheat spikes exhibited enhanced LT resistance,which reduced the sterile spikelet number(SSN)per spike by 11.8%and increased the spikelet setting rate(SSR)and final yield by 6.0 and 8.4%,respectively,compared to the traditional application.The positive effects of split phosphorus application became more pronounced when the LT treatment was prolonged. 展开更多
关键词 optimizing phosphorus application low-temperature stress carbon and nitrogen metabolism young spike development WHEAT
下载PDF
Time since fire affects ecological stoichiometry of plant-soil-microbial systems of Betula platyphylla, a pioneer species in burnt areas of China’s boreal forest
15
作者 Huiying Cai Yang Lin +2 位作者 Yatao Liang Guang Yang Long Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第6期255-266,共12页
Plant stoichiometry and nutrient allocation may reflect adaptation strategies to environmental nutrient changes.Fire,as a major disturbance in forests,mediates soil nutrient availability that may influence plant nutri... Plant stoichiometry and nutrient allocation may reflect adaptation strategies to environmental nutrient changes.Fire,as a major disturbance in forests,mediates soil nutrient availability that may influence plant nutrient dynamics.However,plant–soil stoichiometric allocation strategies during different post-fire periods and the effects of soil,enzymes,and microbial biomass on plant stoichiom-etry are largely unknown.The pioneer tree species Betula platyphylla in burnt forests of northern China was the object of this study,and severely burned areas selected with dif-ferent fire years.Nearby unburned areas acted as a control.Carbon(C),nitrogen(N),and phosphorus(P)contents in leaves,branches,and fine roots and rhizosphere soil,C-,N-and P-acquiring enzyme activities were examined.Microbial biomass C,N,and P were measured,and factors influenc-ing C:N:P stoichiometry of plants during the burned area restoration were explored.Our results show that C and N contents in leaves increased with time since fire,while C and P in branches and C,N and P in fine roots decreased.Activities of C-,N-,and P-acquiring enzymes and microbial biomass N increased with time since fire.Redundancy analy-sis showed that changes in soil N-acquiring enzyme activity,microbial biomass C,and N had significant effects on plant ecological stoichiometry.These results show a significant flexibility in plant nutrient element allocation strategies and C:N:P stoichiometric characteristics.Soil extracellular enzyme activity drives the changes in stoichiometry during the process of post-fire restoration. 展开更多
关键词 WILDFIRE carbon nitrogen phosphorus LEAF Fine roots
下载PDF
Sewage pollution in Negril, Jamaica: effects on nutrition and ecology of coral reef macroalgae 被引量:5
16
作者 B. E. LAPOINTE K. THACKER +1 位作者 C. HANSON L. GETTEN 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第4期775-789,共15页
Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline... Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline survey of DIN and SRP concentrations, C:N:P and stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on shallow and deep reefs of the NMP in 1998 showed strong P-limitation and evidence of increasing sewage pollution. In 1999, a sewage collection and treatment project began diverting wastewater from the resort and urban areas to a pond system that discharged partially-treated effluent into the South Negril River (SNR). These sewage discharges significantly increased concentrations of NH2 and SRP (N:P -13) in the SNR, which flows into Long Bay and around Negril's "West End". Concentrations of SRP, the primary limiting nutrient, were higher on shallow reefs of the West End in 2001 compared to 1998. Stable nitrogen isotope ratios (δ^15N) of abundant reef macroalgae on both shallow and deep reefs of the West End in 2002 were significantly higher than baseline values in 1998, indicating an escalating impact of sewage nitrogen pollution over this timeframe. The increased nutrient concentrations and δ^15N enrichment of reef macroalgae correlated with blooms of the chlorophyte Chaetornorpha linum in shallow waters of Long Bay and Codium isthrnocladum and Caulerpa cupressoides on deep reefs of the West End. Sewage treatment systems adjacent to coral reefs must include nutrient removal to ensure that DIN and SRP concentrations, after dilution, are below the low thresholds noted for these oligotrophic ecosystems. 展开更多
关键词 MACROALGAE SEWAGE carbon nitrogen phosphorus stable nitrogen isotopes EUTROPHICATION
下载PDF
氮添加对森林土壤有机碳库固存及CO_(2)排放的影响研究进展 被引量:3
17
作者 苏立城 陈晓珊 +4 位作者 罗志忠 胡英 陈煜佳 吴道铭 曾曙才 《生态学报》 CAS CSCD 北大核心 2024年第7期2717-2733,共17页
氮添加会引起土壤理化性质和养分有效性的改变。受此影响,森林植物的地上碳同化能力和地下碳分配格局也会相应地发生变化,总体表现为促进植物生长固碳,增加凋落物和植物根系沉积碳输入土壤,并改变上述植物源有机质的数量和化学成分。与... 氮添加会引起土壤理化性质和养分有效性的改变。受此影响,森林植物的地上碳同化能力和地下碳分配格局也会相应地发生变化,总体表现为促进植物生长固碳,增加凋落物和植物根系沉积碳输入土壤,并改变上述植物源有机质的数量和化学成分。与此同时,土壤微生物的群落结构和生态功能也会受到氮添加的影响,由于土壤中的有机碳分解、转化和稳定等过程均受到微生物的驱动,因此,氮添加所引起的底物供应差异和微生物响应会影响森林土壤有机碳的矿化,并最终影响森林土壤有机碳库固存、稳定和CO_(2)排放。但目前关于氮添加对森林土壤有机碳库固存能力和CO_(2)排放特征的影响机制仍不清楚,为此,以森林土壤的碳循环过程为线索,综述了氮添加对底物供应、土壤有机碳激发效应、微生物碳代谢等过程的影响,并尝试梳理在氮添加影响下森林土壤有机碳分解、转化和稳定的微生物驱动机制。这有助于预测氮添加对森林土壤“氮促碳汇”的实际效果,以便研究人员在未来氮沉降日益严重背景下更好地预测森林土壤的碳循环特征,寻找提高森林土壤有机碳库固存能力和降低CO_(2)排放相关途径提供参考。同时,还分析了目前相关研究中存在的问题,并对该领域未来的研究热点进行了展望。 展开更多
关键词 氮添加 森林土壤有机碳库 土壤微生物 有机碳矿化 激发效应 CO_(2)排放
下载PDF
Investigation of phytosociological parameters and physicochemical properties of soil in tropical semi-evergreen forests of Eastern Himalaya 被引量:3
18
作者 Gaurav Mishra P.K.Das Rinkumoni Borah Antara Dutta 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第3期513-520,共8页
The study of floral diversity in forest and its development are incomplete without taking consideration of plant-soil interactions. So with this view in mind, the present study was conducted in tropical semi-evergreen... The study of floral diversity in forest and its development are incomplete without taking consideration of plant-soil interactions. So with this view in mind, the present study was conducted in tropical semi-evergreen forests of the Mokukchung district, Nagaland, in eastern Himalaya. The aim of the study was to investigate the phytosociological parameters Seven sites were randomly in relation to soil properties. selected to study the soil properties at up to one meter in depth and a phytosociological study was carried out in nearby areas via the quadrate method. In the studied sites, the richness of tree species varied from 4 to 15 ha^-1, with Gmelina arborea and Duabanga grandifloras being the common species. The highest total basal area was recorded in 10 mile village (47,998.16 cm^2 ha^-1) followed by Minkong village site (32,704.66 cm^2 ha^-1). Soil physical and chemical properties-i.e, bulk density (BD), soil pH, organic carbon (OC), available nitrogen (N), available phosphorus (P), and available potassium (K) were analyzed using standard procedures. Significant differences were observed in the soil properties. The basal area of species showed significant positive correlation in terms of available K (0.754) and OM (0.302) content in soil, and the Shannon-Wiener diversity index (H) is also positively correlated with the available N content (0.402). The undisturbed nature of the sites played an important role in maintaining the soil fertility and floral diversity of the sites. Moreover, sites with maximum productivity and soil fertility are considered as potential carbon sequestration areas in the region while sites with the low soil fertility need restoration. 展开更多
关键词 Plant diversity carbon nitrogen phosphorus POTASSIUM Nagaland
下载PDF
Effects of Wetland Reclamation on Soil Nutrient Losses and Reserves in Sanjiang Plain,Northeast China 被引量:4
19
作者 WANG Yang LIU Jing-shuang +1 位作者 WANG Jin-da SUN Chong-yu 《Journal of Integrative Agriculture》 SCIE CSCD 2012年第3期512-520,共9页
The carbon (C), nitrogen (N) and phosphorus (P) variations of a temperate wetland soil under continuous cultivation for 40 yr were determined and evaluated in the Sanjiang Plain, Northeast China. The results sho... The carbon (C), nitrogen (N) and phosphorus (P) variations of a temperate wetland soil under continuous cultivation for 40 yr were determined and evaluated in the Sanjiang Plain, Northeast China. The results showed that the soil organic carbon (SOC) and total nitrogen (TN) contents in each soil layer decreased sharply after cultivation for 2-3 yr, and exhibited minor differences after cultivation for 11 yr, which showed an exponential decline curve with the increase of cultivation years. The reduction rates of carbon and nitrogen reserves were 14.79% and 28.53% yr^-1 at the initial reclamation stages of 2-3 yr and then decreased to 2.02-3.08% yr^-1 and 1.98-2.93% yr^-1 after cultivation for 20 yr, respectively. Soil total phosphorus (TP) reserves decreased within cultivation for 5 yr, and then gradually restored to the initial level after cultivation for 17 yr. Both SOC and TN could be restored slightly when the farmland was left fallow for 8 yr after reclamation for 11 yr, whereas TP had no significant difference. These results demonstrated that wetland cultivation was one of the most important factors influencing on the nutrient fate and reserves in soil, which could lead to the rapid nutrient release and slow restoration through abandon cultivation, therefore protective cultivation techniques preventing nutrients from loss should be immediately established after wetland reclamation. 展开更多
关键词 wetland reclamation Sanjiang Plain organic carbon total nitrogen total phosphorus
下载PDF
Effects of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze-Yellow rivers, Tibetan Plateau of China 被引量:5
20
作者 WANG Haiming SUN Jian +3 位作者 LI Weipeng WU Jianbo CHEN Youjun LIU Wenhui 《Journal of Arid Land》 SCIE CSCD 2016年第6期881-889,共9页
Improving our knowledge of the effects of environmental factors (e.g. soil conditions, precipitation and temperature) on belowground biomass in an alpine grassland is essential for understanding the consequences of ... Improving our knowledge of the effects of environmental factors (e.g. soil conditions, precipitation and temperature) on belowground biomass in an alpine grassland is essential for understanding the consequences of carbon storage in this biome. The object of this study is to investigate the relative importance of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze and Yellow rivers, Tibetan Plateau. Soil organic carbon (SOC), total nitrogen (TN) and total phosphorous (TP) contents and belowground biomass were measured at 22 sampling sites across an alpine meadow on the Tibetan Plateau. We analyzed the data by using the redundancy analysis to determine the main environmental factors affecting the belowground biomass and the contribution of each factor. The results showed that SOC, TN and TP were the main factors that influenced belowground biomass, and the contribution of SOC, TN and TP on biomass was in the range of 47.87%-72.06% at soil depths of 0-30 cm. Moreover, the combined contribution of annual mean temperature (AMT) and mean annual precipitation (MAP) on belowground biomass ranged from 0.92% to 4.10%. A potential mechanism for the differences in belowground biomass was caused by the variations in soil nitrogen and phosphorous, which were coupled with SOC. A significant correlation was observed between MAP and soil nutrients (SOC, TN and TP) at the soil depth of 0-10 cm (P〈0.05). We concluded that precipitation is an important driving force in regulating ecosystem functioning as reflected in variations of soil nutrients (SOC, TN and TP) and dynamics of belowground biomass in alpine grassland ecosystems. 展开更多
关键词 belowground biomass soil organic carbon soil nitrogen and phosphorus climate factor alpine meadow Tibetan Plateau
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部