Carbon-and silica-based nanomaterials possess a set of merits including large surface area,good structural stability,diversified morphology,adjustable structure,and biocompatibility.These outstanding features make the...Carbon-and silica-based nanomaterials possess a set of merits including large surface area,good structural stability,diversified morphology,adjustable structure,and biocompatibility.These outstanding features make them widely applied in different fields.However,limited by the surface free energy effect,the current studies mainly focus on the symmetric structures,such as nanospheres,nanoflowers,nanowires,nanosheets,and core-shell structured composites.By comparison,the asymmetric structure with ingenious adjustability not only exhibits a larger effective surface area accompanied with more active sites,but also enables each component to work independently or corporately to harness their own merits,thus showing the unusual performances in some specific applications.The current review mainly focuses on the recent progress of design principles and synthesis methods of asymmetric carbon-and silica-based nanomaterials,and their applications in energy storage,catalysis,and biomedicine.Particularly,we provide some deep insights into their unique advantages in related fields from the perspective of materials’structure-performance relationship.Furthermore,the challenges and development prospects on the synthesis and applications of asymmetric carbon-and silica-based nanomaterials are also presented and highlighted.展开更多
Many Andisols of the Andes have been disturbed by traditional potato-based rotation agriculture disrupting soil structure, water retention capacity and organic matter content. This study was undertaken to investigate ...Many Andisols of the Andes have been disturbed by traditional potato-based rotation agriculture disrupting soil structure, water retention capacity and organic matter content. This study was undertaken to investigate the contribution of conservation farming technology or reduced tillage in potato-based rotations in the Colombian Andes in order to rehabilitate total and aggregated soil organic C in disturbed organic matter-rich Andisols. Soils were sampled from farms with 7-year of reduced tillage and farms with conventional farming practices. Ultrasound energy was applied to samples to disrupt aggregation and total soil C was determined in order to investigate the amount of carbon held inside the aggregates of different soil size classes. Results indicated that reduced tillage in potato-based crop rotations increased the soil C concentration and average C content in the whole profile (≈117 cm depth) by 50 and 33% (1636 t C ha?1 vs. 1224 t C ha?1), respectively, as compared to conventional farming practices. Carbon content increased 177% in the subsoil (A2 horizon, 78 -117 cm depth, from 215 to 596 t?ha?1), although most of the soil C was in the A1 horizon (between 0 -78 cm average thickness, 1097 t?ha?1). These increases show that reduced tillage enhances C stores in Andisols which are already high in organic matter. In addition, C in aggregates represented more than 80% of the total organic matter and it was positively affected by conservation practices. The C increase was preferential in the smaller macroaggregates (展开更多
基金support from the Shuguang Program supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(18SG035)Shanghai Engineering Research Center of Advanced Thermal Functional Materials(Shanghai Polytechnic University).
文摘Carbon-and silica-based nanomaterials possess a set of merits including large surface area,good structural stability,diversified morphology,adjustable structure,and biocompatibility.These outstanding features make them widely applied in different fields.However,limited by the surface free energy effect,the current studies mainly focus on the symmetric structures,such as nanospheres,nanoflowers,nanowires,nanosheets,and core-shell structured composites.By comparison,the asymmetric structure with ingenious adjustability not only exhibits a larger effective surface area accompanied with more active sites,but also enables each component to work independently or corporately to harness their own merits,thus showing the unusual performances in some specific applications.The current review mainly focuses on the recent progress of design principles and synthesis methods of asymmetric carbon-and silica-based nanomaterials,and their applications in energy storage,catalysis,and biomedicine.Particularly,we provide some deep insights into their unique advantages in related fields from the perspective of materials’structure-performance relationship.Furthermore,the challenges and development prospects on the synthesis and applications of asymmetric carbon-and silica-based nanomaterials are also presented and highlighted.
文摘Many Andisols of the Andes have been disturbed by traditional potato-based rotation agriculture disrupting soil structure, water retention capacity and organic matter content. This study was undertaken to investigate the contribution of conservation farming technology or reduced tillage in potato-based rotations in the Colombian Andes in order to rehabilitate total and aggregated soil organic C in disturbed organic matter-rich Andisols. Soils were sampled from farms with 7-year of reduced tillage and farms with conventional farming practices. Ultrasound energy was applied to samples to disrupt aggregation and total soil C was determined in order to investigate the amount of carbon held inside the aggregates of different soil size classes. Results indicated that reduced tillage in potato-based crop rotations increased the soil C concentration and average C content in the whole profile (≈117 cm depth) by 50 and 33% (1636 t C ha?1 vs. 1224 t C ha?1), respectively, as compared to conventional farming practices. Carbon content increased 177% in the subsoil (A2 horizon, 78 -117 cm depth, from 215 to 596 t?ha?1), although most of the soil C was in the A1 horizon (between 0 -78 cm average thickness, 1097 t?ha?1). These increases show that reduced tillage enhances C stores in Andisols which are already high in organic matter. In addition, C in aggregates represented more than 80% of the total organic matter and it was positively affected by conservation practices. The C increase was preferential in the smaller macroaggregates (