期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Inactivated properties of activated carbon-supported TiO_2 nanoparticles for bacteria and kinetic study 被引量:8
1
作者 LI Youji MA Mingyuan +1 位作者 WANG Xiaohu WANG Xiaohua 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第12期1527-1533,共7页
The activated carbon-supported TiO2 nanoparticles(TiO2/AC)were prepared by a properly controlled sol-gel method.The effects of activated carbons(AC)support on inactivated properties of TiO2 nanoparticles were evaluate... The activated carbon-supported TiO2 nanoparticles(TiO2/AC)were prepared by a properly controlled sol-gel method.The effects of activated carbons(AC)support on inactivated properties of TiO2 nanoparticles were evaluated by photocatalytic inactivation experiments of Escherichia coli.The key factors affecting the inactivation effciency were investigated,including electric power of lamp, temperature,and pH values.The results show that the TiO2/AC composites have high inactivation properties of E.coli in compari... 展开更多
关键词 INACTIVATION activated carbon-supported TiO2 sol-gel method BACTERIA
下载PDF
Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate 被引量:2
2
作者 Teng Chen Yi-wen Hu +1 位作者 Cai Zhang Zhao-jian Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1471-1485,共15页
As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.... As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing. 展开更多
关键词 Transition metal oxides carbon-supported transition metal oxides CATALYST Ammonium perchlorate Thermal decomposition
下载PDF
One-step synthesis of carbon-supported copper nanoparticles from biomass for N-arylation of pyrazole 被引量:1
3
作者 Wenjing Li Yongjun Gao +2 位作者 Pei Tang Yao Xu Ding Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期859-865,共7页
Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and wer... Carbon-supported copper catalyst was prepared for the first time in one-step with copper nitrate and corn stalk through calcination under different temperatures. Uniformly dispersed nanoparticles were obtained and were identified to be Cu(0) and Cu(Ⅰ) in XRD patterns. Excellent catalytic activity and selectivity were achieved in the N-arylation of pyrazole under ligand and protection gas free conditions. About90.4% of product yield was achieved with only 0.5 mol% of copper catalyst(Cu-C-300), which was considerably more efficient than previous reports. XPS results suggested that the N-arylation of pyrazole activity was closely related to the surface Cu(Ⅰ) species. 展开更多
关键词 Corn stalk carbon-supported copper N-arylation Ligand-free
下载PDF
Application of X-ray absorption spectroscopy in carbon-supported electrocatalysts 被引量:2
4
作者 Beibei Sheng Yongheng Chu +4 位作者 Dengfeng Cao Yujian Xia Chongjing Liu Shuangming Chen Li Song 《Nano Research》 SCIE EI CSCD 2023年第11期12438-12452,共15页
Breakthroughs in energy storage and conversion devices depend heavily on the exploration of low-cost and high-performance materials.Carbon-supported electrocatalysts with dimensional varieties have recently attracted ... Breakthroughs in energy storage and conversion devices depend heavily on the exploration of low-cost and high-performance materials.Carbon-supported electrocatalysts with dimensional varieties have recently attracted significant attention due to their strong structural flexibility and easy accessibility.Nevertheless,understanding the connection between their electronic,structural properties,and catalytic performance must remain a top priority.Synchrotron radiation(SR)X-ray absorption spectroscopy(XAS)techniques,including hard XAS and soft XAS,are recognized as efficient and comprehensive platforms for probing the surface,interface,and bulk electronic structure of elements of interest in the materials community.In the past decade,the flourishing development of materials science and advanced characterization technologies have led to a deeper understanding at different temporal,longitudinal,and spatial scales.In this review,we briefly describe the concept of XAS techniques and summarize their recent progress in addressing scientific questions on carbon-supported electrocatalysts through the development of advanced instruments and experimental methods.We then discuss the remaining challenges and potential research directions in nextgeneration materials frontiers,and suggest challenges and perspectives for shedding light on the structure–activity relationship. 展开更多
关键词 synchrotron radiation hard X-ray absorption spectroscopy(XAS) soft XAS carbon-supported electrocatalysts
原文传递
Recent advances in carbon-supported non-precious metal singleatom catalysts for energy conversion electrocatalysis 被引量:1
5
作者 Li-Xia Liu Yangyang Ding +9 位作者 Linan Zhu Jin-Cheng Li Huitong Du Xiang Li Zhaoyuan Lyu Dan Du Fuqiang Liu Yuanyuan Wang Wenlei Zhu Yuehe Lin 《National Science Open》 2023年第2期115-160,共46页
Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high... Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high performance.NPM-SACs on carbon support(NPM-SACs/CS)are promising because of the carbon substrate with a large surface area,excellent electrical conductivity,and high chemical stability.This review provides an overview of recent developments in NPM-SACs/CS for the electrocatalytic field.First,the state-of-the-art synthesis methods and advanced characterization techniques of NPM-SACs/CS are discussed in detail.Then,the structural adjustment strategy of NPM-SACs/CS for optimizing electrocatalytic performance is introduced concisely.Furthermore,we provide a comprehensive summary of recent advances in developing NPM-SACs/CS for important electrochemical reactions,including carbon dioxide reduction reaction,hydrogen evolution reaction,oxygen evolution reaction,oxygen reduction reaction,and nitrogen reduction reaction.In the end,the existing challenges and future opportunities of NPM-SACs/CS in the electrocatalytic field are highlighted. 展开更多
关键词 single-atom catalysts non-precious metal electrocatalytic reaction carbon-supported
原文传递
High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction 被引量:6
6
作者 Yiran Wang Riming Hu +3 位作者 Yongcheng Li Fuhe Wang Jiaxiang Shang Jianglan Shui 《Nano Research》 SCIE EI CSCD 2022年第2期1054-1060,共7页
Carbon-supported transition metal single atoms are promising oxygen reduction reaction(ORR)electrocatalyst.Since there are many types of carbon supports and transition metals,the accurate prediction of the components ... Carbon-supported transition metal single atoms are promising oxygen reduction reaction(ORR)electrocatalyst.Since there are many types of carbon supports and transition metals,the accurate prediction of the components with high activity through theoretical calculations can greatly save experimental time and costs.In this work,the ORR catalytic properties of 180 types single-atom catalysts(SACs)composed of the eight representative carbon-based substrates(graphdiyne,C_(2)N,C_(3)N_(4),phthalocyanine,C-coordination graphene,N-coordination graphene,covalent organic frameworks and metal-organic frameworks)and 3d,4d,and 5d transition metal elements are investigated by density functional theory(DFT).The adsorption free energy of OH^(*) is proved a universal descriptor capable of accurately prediction of the ORR catalytic activity.It is found that the oxygen reduction reaction overpotentials of all the researched SACs follow one volcano shape very well with the adsorption free energy of OH^(*).Phthalocyanine,N-coordination graphene and metal-organic frameworks stand out as the promising supports for single metal atom due to the relatively lower overpotentials.Notably,the Co-doped metal-organic frameworks,Ir-doped phthalocyanine,Co-doped N-coordination graphene,Co-doped graphdiyne and Rh-doped phthalocyanine show extremely low overpotentials comparable to that of Pt(111).The study provides a guideline for design and selection of carbon-supported SACs toward oxygen reduction reaction. 展开更多
关键词 oxygen reduction reaction carbon-supported catalysts high throughput screening density functional theory single-atom catalysts
原文传递
Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells 被引量:1
7
作者 Huiyuan Liu Jian Zhao Xianguo Li 《Electrochemical Energy Reviews》 SCIE EI 2022年第4期138-189,共52页
Proton exchange membrane fuel cells are playing an increasing role in postpandemic economic recovery and climate action plans.However,their performance,cost,and durability are significantly related to Pt-based electro... Proton exchange membrane fuel cells are playing an increasing role in postpandemic economic recovery and climate action plans.However,their performance,cost,and durability are significantly related to Pt-based electrocatalysts,hampering their large-scale commercial application.Hence,considerable efforts have been devoted to improving the activity and durability of Pt-based electrocatalysts by controlled synthesis in recent years as an effective method for decreasing Pt use,and consequently,the cost.Therefore,this review article focuses on the synthesis processes of carbon-supported Pt-based electrocatalysts,which significantly affect the nanoparticle size,shape,and dispersion on supports and thus the activity and durability of the prepared electrocatalysts.The reviewed processes include(i)the functionalization of a commercial carbon support for enhanced catalyst-support interaction and additional catalytic effects,(ii)the methods for loading Pt-based electrocatalysts onto a carbon support that impact the manufacturing costs of electrocatalysts,(iii)the preparation of spheri-cal and nonspherical Pt-based electrocatalysts(polyhedrons,nanocages,nanoframes,one-and two-dimensional nanostruc-tures),and(iv)the postsynthesis treatments of supported electrocatalysts.The influences of the supports,key experimental parameters,and postsynthesis treatments on Pt-based electrocatalysts are scrutinized in detail.Future research directions are outlined,including(i)the full exploitation of the potential functionalization of commercial carbon supports,(ii)scaled-up one-pot synthesis of carbon-supported Pt-based electrocatalysts,and(iii)simplification of postsynthesis treatments.One-pot synthesis in aqueous instead of organic reaction systems and the minimal use of organic ligands are preferred to simplify the synthesis and postsynthesis treatment processes and to promote the mass production of commercial carbon-supported Pt-based electrocatalysts. 展开更多
关键词 carbon-supported Pt-based electrocatalysts Synthesis Shape Functionalization of commercial carbon support Postsynthesis treatment
原文传递
Dechlorination of 2,2',4,4',5,5'-hexachlorobiphenyl by thermal reaction with activated carbon-supported copper or zinc
8
作者 Yifei SUN Xin FU +3 位作者 Wei QIAO Wei WANG Tianle ZHU Xinghua LI 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2013年第6期827-832,共6页
Activated carbon (AC)-supported copper or zinc made from ion exchange resin (IRCu-C and IRZn-C) have an increased metal load of 557.3 mg·g^-1 and 502.8 mg·g^-1 compared to those prepared by the tradition... Activated carbon (AC)-supported copper or zinc made from ion exchange resin (IRCu-C and IRZn-C) have an increased metal load of 557.3 mg·g^-1 and 502.8 mg·g^-1 compared to those prepared by the traditional method involving impregnation with AC and copper (II) citrate or zinc citrate solution (LaCu-C and LaZn-C) of 12.9 mg·g^-1 and 46.0 mg·g^-1 respectively. When applied to decompose 2,2',4,4',5,5'-hexachlorobiphenyl at 250 ℃, IRCu-C achieved higher activity of 99.0% decomposition efficiency than LaCu-C of 84.7%, IRZn-C of 90.5% and LaZn-C of 62.7%. When the reaction temperature rose to 350 ℃, all the four kinds of reactants can decompose PCB- 153 with efficiency above 90%. Further, X-ray photoelec- tron spectroscopy characterization of IRCu-C before and after the reaction indicated transformation of 19.1% of Cu atoms into Cu^2+, illustrating that Cu is the active ingredient or electron donor promoting the decomposition of PCB- 153. The mechanism underlying this process differs from a traditional H donor. However, there is no significant change on the surface of IRZn-C before and after the reaction, suggesting that Zn acts as catalyst during the process of PCB-153 decomposition. 展开更多
关键词 polychlorinated biphenyls activated carbon-supported copper or zinc DECHLORINATION electron donor
原文传递
Separation process study of liquid phase catalytic exchange reaction based on the Pt/C/PTFE catalysts 被引量:1
9
作者 Peilong Li Li Guo +7 位作者 Renjin Xiong Junhong Luo Ming Wen Yong Yao Zhi Zhang Jiangfeng Song Yan Shi Tao Tang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第8期1837-1845,共9页
The liquid phase catalytic exchange(LPCE) reaction is an effective process for heavy water detritiation and production of deuterium-depleted potable water. In the current study, hydrophobic carbon-supported platinum c... The liquid phase catalytic exchange(LPCE) reaction is an effective process for heavy water detritiation and production of deuterium-depleted potable water. In the current study, hydrophobic carbon-supported platinum catalysts(Pt/C/PTFE) with high efficiency as reported previously for LPCE were prepared and comprehensive performance evaluation method is applied to evaluate the separation behaviors of LPCE systematically. Experimental results indicate that the optimum reaction temperature of 60–80℃ and the molar feed ratio G/L of 1.5–2.5 would lead to higher separation efficiencies. As to the packing method, a random packing mode with a packing ratio of hydrophobic catalysts 0.25 is recommended. In addition, thermodynamic analysis corresponds well with experimental results under lower temperature and G/L, while the suppression of kinetic factors should not be neglected when T > 80℃ and G/L > 1.5. 展开更多
关键词 Liquid phase CATALYTIC exchange(LPCE) HYDROPHOBIC carbon-supported PLATINUM CATALYSTS SEPARATION behaviors Optimal operating condition Water DETRITIATION
下载PDF
Molten salt as ultrastrong polar solvent enables the most straightforward pyrolysis towards highly efficient and stable single-atom electrocatalyst 被引量:1
10
作者 Nannan Li Wei Liu +7 位作者 Chao Zhu Ce Hao Jingya Guo Hongyu Jing Jinwen Hu Cuncun Xin Danyang Wu Yantao Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期519-527,共9页
Currently,pyrolysis as the most widely used method still has some key issues not well resolved for synthesis of carbon-supported single-atom catalysts(C-SACs),e.g.,the sintering of metal atoms at high temperature as w... Currently,pyrolysis as the most widely used method still has some key issues not well resolved for synthesis of carbon-supported single-atom catalysts(C-SACs),e.g.,the sintering of metal atoms at high temperature as well as the high cost and complicated preparations of precursors.In this report,molten salts are demonstrated to be marvellous medium for preparation of C-SACs by pyrolysis of small molecular precursors(ionic liquid).The ultrastrong polarity on one hand establishes robust interaction with precursor and enables better carbonization,resulting in largely enhanced yield.On the other hand,the aggregation of metal atoms is effectively refrained while no nanoparticle or cluster is formed.By this strategy,a C-SAC with atomically dispersed Fe-N_(4) sites and a high specific area over 2000 m^(2) g^(-1) is obtained,which illustrates high ORR activity in both acid and alkaline media.Moreover,this SAC exhibits superior methanol tolerance and stability after acid soaking at 85℃ for 48 h.It is believed that the molten-salts-assisted pyrolysis can be developed into a routine strategy as it not only can largely simply the synthesis of C-SACs,but also can be extended to prepare other types of SACs. 展开更多
关键词 Ultrastrong polar solvent Molten salts one-pot pyrolysis carbon-supported single atom catalysts Oxygen reduction reaction
下载PDF
Exploring the Predominant Factors Influencing the Oxygen Reduction Performance of PtCo/C Catalysts
11
作者 LI Jinrong YU Xianghui +4 位作者 SUN Qi PENG Yong CAO Shuang HOU Chun-Chao XU Qiang 《Chemical Research in Chinese Universities》 SCIE CAS 2024年第4期753-760,共8页
PtCo nanoalloys(NAs)deposited on carbon black are emerging as robust electrocatalysts for addressing the sluggish kinetic issue of oxygen reduction reaction(ORR).However,developing a simple and low-cost method to synt... PtCo nanoalloys(NAs)deposited on carbon black are emerging as robust electrocatalysts for addressing the sluggish kinetic issue of oxygen reduction reaction(ORR).However,developing a simple and low-cost method to synthesize PtCo/C with excellent performance is still a great challenge.In this work,a one-pot method was used to successfully obtain the PtCo NAs on commercial carbon supports of acetylene black and Ketjenblack ECP600JD,respectively.Compared with those grown on Ketjenblack ECP600JD,the PtCo NAs grown on acetylene black exhibited higher electrochemical surface area(ECSA)and mass activity(MA),which may be attributed to the different particle sizes of PtCo NAs,distinct hydrophilicity,electroconductivity and charge distribution between the carbon supports and PtCo NAs.Our study provides valuable insights into the optimal design of carbon-supported ORR electrocatalysts with exceptional activity and durability. 展开更多
关键词 Oxygen reduction reaction PtCo nanoalloy carbon-supported nanostructure Acetylene black
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部