期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Evidence of melt/rock interaction in the Cr-spinel bearing wehrlite rocks of Bangriposi, India: Implications for nature of the metasomatic agent 被引量:1
1
作者 Tushar Mouli Chakraborti Arijit Ray Gautam Kumar Deb 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1213-1227,共15页
Cr-spinel bearing wehrlite rocks of Bangriposi are found within the multiply deformed metasedimentary rocks of Singhbhum Group belonging to North Singhbhum Mobile Belt of eastern India. Detailed mineralogical and geoc... Cr-spinel bearing wehrlite rocks of Bangriposi are found within the multiply deformed metasedimentary rocks of Singhbhum Group belonging to North Singhbhum Mobile Belt of eastern India. Detailed mineralogical and geochemical studies reveal that these rocks have suffered a two-stage alteration involving a deeper level modal and cryptic metasomatism and a subsequent shallower depth pervasive hydrothermal alteration. Cryptic metasomatism is defined by elevated LREE contents of the wehrlite and its clinopyroxne grains. Metasomatism induced changes in the modal mineralogy of the rocks include the absence of primary orthopyroxene grains, presence of secondary diopside-phlogopite(now present as vermiculite) defining disequilibrium reaction textures and secondary orthopyroxene rims around serpentinized olivine. The mineralogical and geochemical changes due to the metasomatic event present a contrasting picture in regard to the metasomatic history of the rocks. Possible scenarios involving a single stage or multiple stage metasomatism events have been discussed while explaining the metasomatic reactions that took place. An attempt has been made to estimate the REE concentrations of the final equilibrating melt from REE contents of clinopyroxene grains of the wehrlite. The possibility of the LREE-enriched equilibrating melt of the wehrlite rocks(the deeper level metasomatic agent) being similar to residual melts from the E-MORB type parental melts of nearby gabbro suite has been ruled out by geochemical modeling. REE abundance patterns of several natural enriched melts have been compared with REE pattern of calculated LREE-enriched equilibrating melt of the wehrlite and most resemblance has been observed with calcic and potassic melts. It is therefore suggested that the Cr-spinel bearing wehrlite rocks of Bangriposi has been affected by a calcio-potassic melt in deeper level, prior to the shallow level serpentinization event. 展开更多
关键词 WEHRLITE Modal metasomatism Cryptic metasomatism VERMICULITE carbonated alkaline melt
下载PDF
PPC-based Reactive Hot Melt Polyurethane Adhesive(RHMPA)--Efficient Glues for Multiple Types of Substrates 被引量:8
2
作者 Zeng-He Liu Ji-Qing Huang +6 位作者 Li-Jie Sun Dong Lei Jing Cao Shuo Chen Wen-Chang Shih Feng-Ling Qing Zheng-Wei You 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第1期58-64,共7页
Tens of billion metric tons of anthropogenic CO_2 discharged from the burning of fossil fuels lead to an enormous environmental and resource burden. It is charming to transform CO_2 to desirable, economical chemicals ... Tens of billion metric tons of anthropogenic CO_2 discharged from the burning of fossil fuels lead to an enormous environmental and resource burden. It is charming to transform CO_2 to desirable, economical chemicals and materials. Poly(propylene carbonate)(PPC) is an emerging CO_2-based material. Herein, we report the design, synthesis and characterization of the reactive hot melt polyurethane adhesive(RHMPA) based on PPC polyol. The resultant RHMPAs exhibit good adhesion properties to multiple substrates including plastics(PC, PMMA, ABS) and metals(aluminium, steel), which is comparable to or even better than conventional RHMPAs prepared from petro-based polyol. Furthermore, the PPC-based RHMPAs have tunable mechanical properties, and are thermally stable in the typical working range of bonding process(up to 270 °C). The study is expected to expand the applications of PPC and provide a new type of CO_2-based renewable and eco-friendly materials. 展开更多
关键词 CO_2-based poly(propylene carbonate Reactive hot melt polyurethane adhesive Sustainable adhesive Adhesion property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部