Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras...Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.展开更多
The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Never...The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Nevertheless,the self-cleaning process may accelerate membrane aging.Addressing these concerns,we present an innovative design concept for composite self-healing materials based on self-cleaning UF membranes.To begin,TiO_(2)nanoparticles were incorporated into the polymer molecular structure via molecular design,resulting in the synthesis of TiO_(2)/carboxyl-polyether sulfone(PES)hybrid materials.Subsequently,the nonsolvent-induced phase inversion technique was employed to prepare a novel of UF membrane.Lastly,a polyvinyl alcohol(PVA)hydrogel coating was applied to the hybrid UF membrane surface to create PVA@TiO_(2)/carboxyl-PES self-healing reactive UF membranes.By establishing a covalent bond,the TiO_(2)nanoparticles were effectively and uniformly dispersed within the UF membrane,leading to exceptional self-cleaning properties.Furthermore,the water-absorbing and swelling properties of PVA hydrogel,along with its capacity to form hydrogen bonds with water molecules,resulted in UF membranes with improved hydrophilicity and active self-healing abilities.The results demonstrated that the water contact angle of PVA@5%TiO_(2)/carboxyl-PES UF membrane was 43.1°.Following a 1-h exposure to simulated solar exposure,the water flux recovery ratio increased from 48.16%to 81.03%.Moreover,even after undergoing five cycles of 12-h simulated sunlight exposure,the UF membranes exhibited a consistent retention rate of over 97%,thus fully demonstrating their exceptional self-cleaning,antifouling,and selfhealing capabilities.We anticipate that the self-healing reactive UF membrane system will serve as a pioneering and comprehensive solution for the self-cleaning antifouling challenges encountered in UF membranes while also effectively mitigating the aging effects of reactive UF membranes.展开更多
The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self...The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions.Herein,we design a new hydrogel electrolyte(AF/SH-Hydrogel)with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules,dynamic chemical bonding(disulfide bond),and supramolecular interaction(multi-hydrogen bond)into the polyacrylamide molecular chain.Thanks to the exceptional freeze resistance(84%capacity retention at-20℃)and intrinsic self-healing capabilities(95%capacity retention after 5 cutting/self-healing cycles),the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications.The Zn||AF/SH-Hydrogel||MnO_(2)device offers a near-theoretical specific capacity of 285 m A h g^(-1)at 0.1 A g^(-1)(Coulombic efficiency≈100%),as well as good self-healing capability and mechanical flexibility in an ice bath.This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.展开更多
The complete deposition distribution process of calcium carbonate is summarized in three directions of cracks. Distribution of calcium carbonate in the self-healing process of microbial concrete is studied in detail, ...The complete deposition distribution process of calcium carbonate is summarized in three directions of cracks. Distribution of calcium carbonate in the self-healing process of microbial concrete is studied in detail, with the help of a variety of analytical techniques. The results show that carbonate deposits along the x-axis direction of the cracks. The farther from the crack surfaces of concrete matrix in x-axis direction, the more the content of the substrate, the less content of calcium carbonate. Gradual accumulation of calcium carbonate along the y-axis direction is like building a house with bricks. Different repair points are gradually connected, and ultimately the whole of cracks are completely filled. In the z-axis direction, calcium deposits on the surface of fracture direction, when the crack is filled on the surface, because the internal crack hypoxia in the depths of cracks hardly produces calcium carbonate.展开更多
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con...The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.展开更多
In this paper,1-butyl-3-methylimidazole tetrafluoroborate([BMIM]BF4)is used as corrosion inhibitor.Polyacrylonitrile(PAN)is used to load the corrosion inhibitor.PAN/[BMIM]BF4 hybrid nanofibers are successfullysynthesi...In this paper,1-butyl-3-methylimidazole tetrafluoroborate([BMIM]BF4)is used as corrosion inhibitor.Polyacrylonitrile(PAN)is used to load the corrosion inhibitor.PAN/[BMIM]BF4 hybrid nanofibers are successfullysynthesized by electrospinning technology.The alkyd varnish is coated on the fiber membrane to prepare a compositecoating,and then a series of tests are carried out on the self-healing and anticorrosive performance of the compositecoating.It is observed by scanning electron microscope that the fiber morphology is stable and there is no bead-likestructure.The composition of the composite fiber is analyzed by Fourier infrared spectroscopy,and it is confirmed thatthe hybrid nanofiber was successfully prepared.3D laser confocal scanning microscope was used to observe thecorrosion morphology and profile of the carbon steel.The composite coating shows good self-healing performance.[BMIM]BF4 can form a protective film on the surface of the bare carbon steel substrate through physical adsorption orchemical adsorption in an alkaline environment.Electrochemical impedance spectroscopy was tested and analyzed.It isfound that the maximum corrosion inhibition efficiency of the coating is 88.5%in 3.5 wt.%alkaline NaCl solution.Compared with the blank coating without nanofibers,the composite fiber varnish composite coating exhibits good selfhealingand anti-corrosion properties.展开更多
Compared with traditional piezoelectric ultrasonic devices,optoacoustic devices have unique advantages such as a simple preparation process,anti-electromagnetic interference,and wireless long-distance power supply.How...Compared with traditional piezoelectric ultrasonic devices,optoacoustic devices have unique advantages such as a simple preparation process,anti-electromagnetic interference,and wireless long-distance power supply.However,current optoacoustic devices remain limited due to a low damage threshold and energy conversion efficiency,which seriously hinder their widespread applications.In this study,using a self-healing polydimethylsiloxane(PDMS,Fe-Hpdca-PDMS)and carbon nanotube composite,a flexible optoacoustic patch is developed,which possesses the self-healing capability at room temperature,and can even recover from damage induced by cutting or laser irradiation.Moreover,this patch can generate high-intensity ultrasound(>25 MPa)without the focusing structure.The laser damage threshold is greater than 183.44 mJ cm^(-2),and the optoacoustic energy conversion efficiency reaches a major achievement at 10.66×10^(-3),compared with other carbon-based nanomaterials and PDMS composites.This patch is also been successfully examined in the application of acoustic flow,thrombolysis,and wireless energy harvesting.All findings in this study provides new insight into designing and fabricating of novel ultrasound devices for biomedical applications.展开更多
Herein,a novel composite coating with excellent self-healing and corrosion resistance activated byphotothermal responsive hollow core-shell nanofillers was developed.A photothermal nanofiller(Co_(9)S_(8)@Bi_(2)S_(3))w...Herein,a novel composite coating with excellent self-healing and corrosion resistance activated byphotothermal responsive hollow core-shell nanofillers was developed.A photothermal nanofiller(Co_(9)S_(8)@Bi_(2)S_(3))with ahollow core-shell structure was synthesized and then added to polyurethane(PU)to prepare PU-Co_(9)S_(8)@Bi_(2)S_(3)compositecoating.Applying 808 nm near-infrared irradiation induces a photothermal effect in Co_(9)S_(8)@Bi_(2)S_(3),which subsequentlyinitiates the reconstruction of reversible hydrogen bonds,facilitating the self-healing of coating scratches.The excellentphotothermal self-healing performance of PU-Co_(9)S_(8)@Bi_(2)S_(3)coating was demonstrated by scratch tests and moleculardynamics simulations.The electrochemical impedance spectroscopy test results showed that the PU-Co_(9)S_(8)@Bi_(2)S_(3)coating has good self-healing and anti-corrosion properties.The low-frequency impedance modulus of the coating afterthree self-healing sessions was still close to 109Ω·cm^(2)after 30 d of immersion in seawater.This study provides a newstrategy for developing multi-cycle self-healing coatings triggered by photothermal effects.展开更多
Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,whic...Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.展开更多
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ...The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.展开更多
The requisite functions of a bentonite buffer in a deep geological repository depend on the sealing/healing of bentonite interfaces,with particular emphasis on the self-healing(automatic healing upon wetting)of assemb...The requisite functions of a bentonite buffer in a deep geological repository depend on the sealing/healing of bentonite interfaces,with particular emphasis on the self-healing(automatic healing upon wetting)of assembled bentonite-bentonite interfaces.This study determined the shear resistance(including the peak shear strength and secant modulus)of densely compacted Gaomiaozi(GMZ)bentonite and its assembled interface after confined water saturation.The effect of bentonite dry density and saturation time on the shear resistance of saturated healed interfaces was elucidated,and the interfacial self-healing capacity was assessed.The results indicate that the shear resistance of the saturated healed interfaces increased with the bentonite dry density but had a non-monotonic correlation with the saturation time.For a given dry density of the bentonite,the saturated healed interface exhibits a lower peak shear strength than the saturated intact bentonite but a higher peak shear strength than the saturated separated interface.The saturated healed and separated interfaces have comparable shear moduli(secant moduli),which are lower than that of the saturated intact bentonite.The saturated healed interfaces display smooth shear failure planes,while the saturated assembled interfaces and intact bentonite exhibit comparable frictional angles.This indicates that interfacial self-healing plays a pivotal role in enhancing interfacial peak shear strength by facilitating microstructural bonding at the assembled interface.Finally,it can be stated that densely compacted GMZ bentonite has a robust interfacial self-healing capacity in terms of shear resistance.These findings contribute to the design of the bentonite buffer and facilitate the evaluation of its safe operation at specified disposal ages.展开更多
Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to...Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.展开更多
In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations we...In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene.展开更多
Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel ...Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed tmiformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.展开更多
The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self...The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model.展开更多
The technology of fabrication of polymer nanocomposites on basis of carbon nanoparticles doped with cobalt clusters, synthesized by original Chemical Vapore Deposition (CVD) technology developed by authors, was elabor...The technology of fabrication of polymer nanocomposites on basis of carbon nanoparticles doped with cobalt clusters, synthesized by original Chemical Vapore Deposition (CVD) technology developed by authors, was elaborated. Carbon shells provide both the protection of ferromagnetic impurities from aggressive environment and new unique properties to the hybride nanostructures. The self-assembling of magnetic clusters coated by carbon shells presents just such example which could be used in the contemporary materials, for example, in strong magnets, analytic instruments (nuclear magnetic resonance tomographs) and nanosensors. Their good conductivity, self-healing and adhesion properties were demonstrated by applying the combined action of temperature, pressure, steady and alternating magnetic fields to stimulate diffusion of magnetic nanoparticles in direction to defect sites. Due to these properties fabricated magnetic polymer nanocomposites could have perspective for potential.展开更多
Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration o...Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration of variable renewable energy(VRE).However,the rapid growth of VRE will pose substantial challenges to the power system,highlighting the importance of power system planning.This letter introduces Grid Optimal Planning Tool(GOPT),a planning tool,and presents the key findings of our research utilizing GOPT to analyze the transition pathway of China’s power system towards dual carbon goals.Furthermore,the letter offers insights into key technologies essential for driving the future transition of China’s power system.展开更多
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d...Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_...Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.展开更多
基金supported by the National Natural Science Foundation of China(52174247 and 22302066)“Hejian”Innovative Talent Project of Hunan Province(No.2022RC1088)+1 种基金the Hunan Provincial Natural Science Foundation(2023JJ40255)the Scientific Research Foundation of Hunan Provincial Education(22B0599 and 23A0442)。
文摘Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.
基金supported by the National Natural Science Foundation of China(51978133,52100026,U20A20322,52170151,51978132)the Fundamental Research Funds for the Central Universities of China(2412021QD022)+1 种基金the Key Research and Development Project of Hainan Province(ZDYF2022SHFZ298)the Industrialization Cultivation Project of Jilin Provincial Department of Education(JJKH20221174CY)。
文摘The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Nevertheless,the self-cleaning process may accelerate membrane aging.Addressing these concerns,we present an innovative design concept for composite self-healing materials based on self-cleaning UF membranes.To begin,TiO_(2)nanoparticles were incorporated into the polymer molecular structure via molecular design,resulting in the synthesis of TiO_(2)/carboxyl-polyether sulfone(PES)hybrid materials.Subsequently,the nonsolvent-induced phase inversion technique was employed to prepare a novel of UF membrane.Lastly,a polyvinyl alcohol(PVA)hydrogel coating was applied to the hybrid UF membrane surface to create PVA@TiO_(2)/carboxyl-PES self-healing reactive UF membranes.By establishing a covalent bond,the TiO_(2)nanoparticles were effectively and uniformly dispersed within the UF membrane,leading to exceptional self-cleaning properties.Furthermore,the water-absorbing and swelling properties of PVA hydrogel,along with its capacity to form hydrogen bonds with water molecules,resulted in UF membranes with improved hydrophilicity and active self-healing abilities.The results demonstrated that the water contact angle of PVA@5%TiO_(2)/carboxyl-PES UF membrane was 43.1°.Following a 1-h exposure to simulated solar exposure,the water flux recovery ratio increased from 48.16%to 81.03%.Moreover,even after undergoing five cycles of 12-h simulated sunlight exposure,the UF membranes exhibited a consistent retention rate of over 97%,thus fully demonstrating their exceptional self-cleaning,antifouling,and selfhealing capabilities.We anticipate that the self-healing reactive UF membrane system will serve as a pioneering and comprehensive solution for the self-cleaning antifouling challenges encountered in UF membranes while also effectively mitigating the aging effects of reactive UF membranes.
基金supported by the link project of the National Natural Science Foundation of China(52002052 and 22209020)the Key Research and Development Project of Science and Technology Department of Sichuan Province(2022YFSY0004)+2 种基金the Opening project of the State Key Laboratory of New Textile Materials and Advanced Processing Technology(FZ2021009)the Natural Science Foundation of Sichuan Province(2023NSFSC0995)the Natural Science Foundation of Hunan Province(2022JJ30227)。
文摘The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions.Herein,we design a new hydrogel electrolyte(AF/SH-Hydrogel)with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules,dynamic chemical bonding(disulfide bond),and supramolecular interaction(multi-hydrogen bond)into the polyacrylamide molecular chain.Thanks to the exceptional freeze resistance(84%capacity retention at-20℃)and intrinsic self-healing capabilities(95%capacity retention after 5 cutting/self-healing cycles),the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications.The Zn||AF/SH-Hydrogel||MnO_(2)device offers a near-theoretical specific capacity of 285 m A h g^(-1)at 0.1 A g^(-1)(Coulombic efficiency≈100%),as well as good self-healing capability and mechanical flexibility in an ice bath.This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.
基金Funded by the National Natural Science Foundation of China(No.51178104)333 Project of JiangsuPhD Program’s Foundation of Ministry of Education of China(No.20110092110033)
文摘The complete deposition distribution process of calcium carbonate is summarized in three directions of cracks. Distribution of calcium carbonate in the self-healing process of microbial concrete is studied in detail, with the help of a variety of analytical techniques. The results show that carbonate deposits along the x-axis direction of the cracks. The farther from the crack surfaces of concrete matrix in x-axis direction, the more the content of the substrate, the less content of calcium carbonate. Gradual accumulation of calcium carbonate along the y-axis direction is like building a house with bricks. Different repair points are gradually connected, and ultimately the whole of cracks are completely filled. In the z-axis direction, calcium deposits on the surface of fracture direction, when the crack is filled on the surface, because the internal crack hypoxia in the depths of cracks hardly produces calcium carbonate.
基金the National Key R&D Program of China(No.2022YFE0208100)the National Natural Science Foundation of China(No.5274316)+1 种基金the Key Research and Development Plan of Anhui Province,China(No.202210700037)the Major Science and Technology Project of Xinjiang Uygur Autonomous Region,China(No.2022A01003).
文摘The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.
基金Projects(42076039,42106042)supported by the National Natural Science Foundation of ChinaProject(202165004)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(JC12022106)supported by 2022 Innovation Project for Young Scientific and Technological Talents in Basic Science Research,China。
文摘In this paper,1-butyl-3-methylimidazole tetrafluoroborate([BMIM]BF4)is used as corrosion inhibitor.Polyacrylonitrile(PAN)is used to load the corrosion inhibitor.PAN/[BMIM]BF4 hybrid nanofibers are successfullysynthesized by electrospinning technology.The alkyd varnish is coated on the fiber membrane to prepare a compositecoating,and then a series of tests are carried out on the self-healing and anticorrosive performance of the compositecoating.It is observed by scanning electron microscope that the fiber morphology is stable and there is no bead-likestructure.The composition of the composite fiber is analyzed by Fourier infrared spectroscopy,and it is confirmed thatthe hybrid nanofiber was successfully prepared.3D laser confocal scanning microscope was used to observe thecorrosion morphology and profile of the carbon steel.The composite coating shows good self-healing performance.[BMIM]BF4 can form a protective film on the surface of the bare carbon steel substrate through physical adsorption orchemical adsorption in an alkaline environment.Electrochemical impedance spectroscopy was tested and analyzed.It isfound that the maximum corrosion inhibition efficiency of the coating is 88.5%in 3.5 wt.%alkaline NaCl solution.Compared with the blank coating without nanofibers,the composite fiber varnish composite coating exhibits good selfhealingand anti-corrosion properties.
基金This work was supported by the Natural Science Foundation of China(Grant no.U22A20259,12102140)the Shenzhen Basic Science Research(No.JCYJ20200109110006136)the China Postdoctoral Science Foundation(No.2022M721258).We also thank the Analytical and Testing Center of Huazhong University of Science&Technology.
文摘Compared with traditional piezoelectric ultrasonic devices,optoacoustic devices have unique advantages such as a simple preparation process,anti-electromagnetic interference,and wireless long-distance power supply.However,current optoacoustic devices remain limited due to a low damage threshold and energy conversion efficiency,which seriously hinder their widespread applications.In this study,using a self-healing polydimethylsiloxane(PDMS,Fe-Hpdca-PDMS)and carbon nanotube composite,a flexible optoacoustic patch is developed,which possesses the self-healing capability at room temperature,and can even recover from damage induced by cutting or laser irradiation.Moreover,this patch can generate high-intensity ultrasound(>25 MPa)without the focusing structure.The laser damage threshold is greater than 183.44 mJ cm^(-2),and the optoacoustic energy conversion efficiency reaches a major achievement at 10.66×10^(-3),compared with other carbon-based nanomaterials and PDMS composites.This patch is also been successfully examined in the application of acoustic flow,thrombolysis,and wireless energy harvesting.All findings in this study provides new insight into designing and fabricating of novel ultrasound devices for biomedical applications.
基金Project(42076039)supported by the National Natural Science Foundation of ChinaProject(ZR2020ME016)supported by the Natural Science Foundation of Shandong Province,ChinaProject(202165004)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Herein,a novel composite coating with excellent self-healing and corrosion resistance activated byphotothermal responsive hollow core-shell nanofillers was developed.A photothermal nanofiller(Co_(9)S_(8)@Bi_(2)S_(3))with ahollow core-shell structure was synthesized and then added to polyurethane(PU)to prepare PU-Co_(9)S_(8)@Bi_(2)S_(3)compositecoating.Applying 808 nm near-infrared irradiation induces a photothermal effect in Co_(9)S_(8)@Bi_(2)S_(3),which subsequentlyinitiates the reconstruction of reversible hydrogen bonds,facilitating the self-healing of coating scratches.The excellentphotothermal self-healing performance of PU-Co_(9)S_(8)@Bi_(2)S_(3)coating was demonstrated by scratch tests and moleculardynamics simulations.The electrochemical impedance spectroscopy test results showed that the PU-Co_(9)S_(8)@Bi_(2)S_(3)coating has good self-healing and anti-corrosion properties.The low-frequency impedance modulus of the coating afterthree self-healing sessions was still close to 109Ω·cm^(2)after 30 d of immersion in seawater.This study provides a newstrategy for developing multi-cycle self-healing coatings triggered by photothermal effects.
基金supported by the Project of Shanghai Science and Technology Commission (Grant No. 19DZ1203102)National Key Research and Development Project (2018YFD0401300)Shanghai Municipal Science and Technology Project (16040501600)。
文摘Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.
基金supported by the National Natural Science Foundation of China(U23A6005 and 32171721)State Key Laboratory of Pulp and Paper Engineering(202305,2023ZD01,2023C02)+1 种基金Guangdong Province Basic and Application Basic Research Fund(2023B1515040013)the Fundamental Research Funds for the Central Universities(2023ZYGXZR045).
文摘The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.
基金supported by the National Natural Science Foundation of China (Grant Nos.42125701 and 41977232)China Postdoctoral Science Foundation (Grant No.2021M702234).
文摘The requisite functions of a bentonite buffer in a deep geological repository depend on the sealing/healing of bentonite interfaces,with particular emphasis on the self-healing(automatic healing upon wetting)of assembled bentonite-bentonite interfaces.This study determined the shear resistance(including the peak shear strength and secant modulus)of densely compacted Gaomiaozi(GMZ)bentonite and its assembled interface after confined water saturation.The effect of bentonite dry density and saturation time on the shear resistance of saturated healed interfaces was elucidated,and the interfacial self-healing capacity was assessed.The results indicate that the shear resistance of the saturated healed interfaces increased with the bentonite dry density but had a non-monotonic correlation with the saturation time.For a given dry density of the bentonite,the saturated healed interface exhibits a lower peak shear strength than the saturated intact bentonite but a higher peak shear strength than the saturated separated interface.The saturated healed and separated interfaces have comparable shear moduli(secant moduli),which are lower than that of the saturated intact bentonite.The saturated healed interfaces display smooth shear failure planes,while the saturated assembled interfaces and intact bentonite exhibit comparable frictional angles.This indicates that interfacial self-healing plays a pivotal role in enhancing interfacial peak shear strength by facilitating microstructural bonding at the assembled interface.Finally,it can be stated that densely compacted GMZ bentonite has a robust interfacial self-healing capacity in terms of shear resistance.These findings contribute to the design of the bentonite buffer and facilitate the evaluation of its safe operation at specified disposal ages.
基金supported by the National Natural Science Foundation of China(Grant No.41972265)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-57)+1 种基金the Gansu Province Science Foundation(Grant No.20JR10RA492)Special thanks to the Environmental Research and Education Foundation for supporting the first author(Y.Tan)through a fellowship for his study at the University of Wisconsin-Madison.
文摘Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.
基金financially supported by the National Natural Science Foundation of China(Approval No.42172168).
文摘In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene.
基金Supported by the Open Project of Key Laboratory of Marine New Materials of CNITECH(No.LMMT-KFKT-2014-008)the National Basic Research Program of China(973 Program)(No.2014CB643304)
文摘Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed tmiformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.
基金Project(2018YFC0705404)supported by the National Key Technology Research and Development of ChinaProjects(51878480,51678442,51878481,51878496)supported by the National Natural Science Foundation of China+1 种基金Project(U1534207)supported by the National High-speed Train Union Fund,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model.
文摘The technology of fabrication of polymer nanocomposites on basis of carbon nanoparticles doped with cobalt clusters, synthesized by original Chemical Vapore Deposition (CVD) technology developed by authors, was elaborated. Carbon shells provide both the protection of ferromagnetic impurities from aggressive environment and new unique properties to the hybride nanostructures. The self-assembling of magnetic clusters coated by carbon shells presents just such example which could be used in the contemporary materials, for example, in strong magnets, analytic instruments (nuclear magnetic resonance tomographs) and nanosensors. Their good conductivity, self-healing and adhesion properties were demonstrated by applying the combined action of temperature, pressure, steady and alternating magnetic fields to stimulate diffusion of magnetic nanoparticles in direction to defect sites. Due to these properties fabricated magnetic polymer nanocomposites could have perspective for potential.
基金supported by the National Natural Science Foundation of China(No.52130702,No.52177093)。
文摘Under the pressure of environmental issues,decarbonization of the entire energy system has emerged as a prevalent strategy worldwide.The evolution of China’s power system will increasingly emphasize the integration of variable renewable energy(VRE).However,the rapid growth of VRE will pose substantial challenges to the power system,highlighting the importance of power system planning.This letter introduces Grid Optimal Planning Tool(GOPT),a planning tool,and presents the key findings of our research utilizing GOPT to analyze the transition pathway of China’s power system towards dual carbon goals.Furthermore,the letter offers insights into key technologies essential for driving the future transition of China’s power system.
基金financially supported by the National Natural Science Foundation of China(Nos.U1904173 and 52272219)the Key Research Projects of Henan Provincial Department of Education(No.19A150043)+2 种基金the Natural Science Foundation of Henan Province(Nos.202300410330 and 222300420276)the Nanhu Scholars Program for Young Scholars of Xinyang Normal Universitythe Xinyang Normal University Analysis&Testing Center。
文摘Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金financially supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province,China(No.2022AH050816)the Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2023013 and EC2022018)+1 种基金the National Natural Science Foundation of China(No.52200139)the Introduction of Talent in Anhui University of Science and Technology,China(Nos.2021yjrc18 and 2023yjrc79)。
文摘Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.