Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composi...Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.展开更多
Silicon carbide (SiC) has been prepared by passing natural gas over (100) oriented hot Si substrate at different temperatures in the range 930~1000℃. Reaction times of 60 and 90 min are used.Depth profile, using Auge...Silicon carbide (SiC) has been prepared by passing natural gas over (100) oriented hot Si substrate at different temperatures in the range 930~1000℃. Reaction times of 60 and 90 min are used.Depth profile, using Auger Electron Spectroscopy, shows the formation of SiC under a thin coating of carbon for the samples prepared at 930 and 950℃. Annealing, at 1050℃ for 12 h,results in a more pronounced formation of SiC. It is found that at the temperature of 1000℃and reaction times of 60 and 90 min, a hard diamond-like coating is formed.展开更多
[Objectives] To optimize the extraction process of total flavonoids from Sanguisorbae Radix and carbonized Sanguisorba root,compare quality of different batches of Sanguisorbae Radix,study the effects of processing on...[Objectives] To optimize the extraction process of total flavonoids from Sanguisorbae Radix and carbonized Sanguisorba root,compare quality of different batches of Sanguisorbae Radix,study the effects of processing on the content of flavonoids,and provide scientific basis for reasonable utilization of Sanguisorbae Radix. [Methods] Test samples were prepared by heating,refluxing,and extraction,the extraction process was optimized by orthogonal experiment design,color was developed by NaNO_2-Al( NO_3)3-NaOH,and total flavonoids were measured by UV method at the wavelength of 510 nm. [Results] The linear relationship of rutin was excellent in the concentration range of 0. 1248 mg/mL-0. 5712 mg/mL,R^2= 0. 9997; the average recovery was 99. 67% and the RSD was 0. 70%. The optimum extraction conditions were as follows: the volume fraction of ethanol was 50%,the extraction temperature was 90℃,the extraction time was 90 min,and the solid-to-liquid ratio was 1∶ 20( g/mL). [Conclusions] After optimization of the extraction process,the extraction rate of total flavonoids in samples of Sanguisorbae Radix was significantly increased; there was certain difference in the content of total flavonoids between different batches of Sanguisorbae Radix and processed products; the total flavonoids significantly declines in carbonized sanguisorba root,and the influence of processing on its curative effect was to be further studied.展开更多
Zinc oxide nanoparticles(ZnOnp) are molecular nanoparticles synthesized by a chemical precipitation method from zinc nitrate tetrahydrate and sodium hydroxide.Carbonized sawdust(CSD) was prepared from sawdust obtained...Zinc oxide nanoparticles(ZnOnp) are molecular nanoparticles synthesized by a chemical precipitation method from zinc nitrate tetrahydrate and sodium hydroxide.Carbonized sawdust(CSD) was prepared from sawdust obtained from a local wood mill.The matrix of both provides a better material as an adsorbent.The present study applied the functionality of ZnOnp,CSD,and ZnOnp-CSD matrix as adsorbent materials for the removal of Pb(Ⅱ) ions from aqueous solution.The method of batch process was employed to investigate the potential of the adsorbents.The influence of pH,contact time,initial concentration of adsorbate,the dosage of adsorbents,and the temperature of adsorbate-adsorbent mixture on the adsorption capacity were revealed.The adsorption isotherm studies indicate that both Freundlich and Langmuir isotherms were suitable to express the experimental data obtained with theoretical maximum adsorption capacities(q_(m)) of 70.42,87.72,and 92.59 mg·g^(-1) for the adsorption of Pb(Ⅱ) ions onto ZnOnp,CSD,and ZnOnp-CSD matrix,respectively.The separation factors(R_(L)) calculated showed that the use of the adsorbents for the removal of Pb(Ⅱ) ions is a feasible process with R_(L) <1.The thermodynamic parameters obtained revealed that the processes are endothermic,feasible,and spontaneous in nature at 25-50℃.Evaluation of the kinetic model elected that the processes agreed better with pseudo-second order where the values of rate constant(k_2) obtained for the adsorption of Pb(Ⅱ) ions onto ZnOnp,CSD,and ZnOnp-CSD matrix are 0.00149,0.00188,and 0.00315 g·mg^(-1)·min^(-1),respectively.The reusability potential examined for four cycles indicated that the adsorbents have better potential and economic value of reuse and the ZnOnp-CSD matrix indicates improved adsorbent material to remove Pb(Ⅱ) ions from aqueous solution.展开更多
Humic acid(HA)was carbonized at 300,400 and 500℃ and then functionalized with 1 wt%–12 wt%Fe(Ⅲ)respectively[CHA300/400/500-Fe(Ⅲ)].Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous te...Humic acid(HA)was carbonized at 300,400 and 500℃ and then functionalized with 1 wt%–12 wt%Fe(Ⅲ)respectively[CHA300/400/500-Fe(Ⅲ)].Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous tetracycline(TC:25 mg·L^-1)was studied.The adsorption equilibrium time for CHA400-Fe(Ⅲ)to TC was 6 h faster and the adsorption removal efficiency(Re)was two times higher than that of HA/CHA.The adsorption Reof CHA400-Fe(Ⅲ)loaded 10%iron[CHA400-(10%)Fe(Ⅲ)]to TC could reach 99.8%at 8 h and still kept80.6%after 8 cycles.The adsorption kinetics were well fitted to the pseudo-second-order equation and the adsorption isotherms could be well delineated via Langmuir equations(R^2N 0.99),indicating that the homogeneous chemical adsorption of TC occurred on the adsorbents.The main adsorption mechanisms of TC were complexation Fe(III)and hydrophobic distribution.Electropositive and electronegative repulsion between TC and CHA400-(10%)Fe(Ⅲ)at lowly p H(2)and highly p H(8–10)respectively,leaded to the relatively low adsorption capacity and more notable influence of ion concentration.When the p H was between 4 and 8,TC mainly existed in neutral molecules(TCH2),so the influence of ion concentration was not obvious.The dynamic adsorption results showed that the CHA400-(10%)Fe(Ⅲ)could continuously treat about 2.4 L TC(27 mg·L^-1)wastewater with the effluent concentration as low as 0.068 mg·L^-1.Our study suggested a broad application prospect of a new,effective,lowcost and environment-friendly adsorbent CHA400-(10%)Fe(Ⅲ)for treatment of low-concentration TC polluted wastewater.展开更多
Flexible strain sensor has attracted much attention because of its potential application in human motion detection.In this work,the prepared strain sensor was obtained by encapsulating electrospun carbonized sponge(CS...Flexible strain sensor has attracted much attention because of its potential application in human motion detection.In this work,the prepared strain sensor was obtained by encapsulating electrospun carbonized sponge(CS)with room temperature vulcanized silicone rubber(RTVS).In this paper,the formation mechanism of conductive sponge was studied.Based on the combination of carbonized sponge and RTVS,the strain sensing mechanism and piezoresistive properties are discussed.After research and testing,the CS/RTVS flexible strain sensor has excellent fast response speed and stability,and the maximum strain coefficient of the sensor is 136.27.In this study,the self-developed CS/RTVS sensor was used to monitor the movements of the wrist joint,arm elbow joint and fingers in real time.Research experiments show that CS/RTVS flexible strain sensor has good application prospects in the field of human motion monitoring.展开更多
A new sampling method of ambient air analysis using carbonized fibrous resin as a sorbent for polycyclic aromatic hydrocarbons (PAHs) was reported. The physical and chemical properties of the carbonized fibrous resin...A new sampling method of ambient air analysis using carbonized fibrous resin as a sorbent for polycyclic aromatic hydrocarbons (PAHs) was reported. The physical and chemical properties of the carbonized fibrous resins were measured. The sample pretreatment with ultrasonic extraction and subsequent clean-up elution through a silica gel column was optimized. The suitable ultrasonic extraction conditions were selected as follows: resin weight was 1.5 g, ultrasonic extraction time 20 min, volume of extraction solvent 100 ml and extraction operation times 2~3. The concentrated extractable organic matter was submitted to next step of clean-up procedure of adsorption chromatography on silica gel column/n-hexane and a mixture of dichloromethene:n-hexane solution 2:3 (v/v). The PAHs fractions in the real samples from Changzhou, China were particularly analyzed using GC-MS data system and the data of mass spectra, retention times and scan numbers of the real samples were compared with that of the standards of 16 PAHs listed by the US EPA as 損riority pollutants?of the environment. The analysis of the real samples indicates that the carbonized fibrous resin is a good sorbent. The pretreatment of samples of ambient air with carbonized fibrous resin as a sorbent for PAHs is proved to be reliable and might be used for the procedure of the determination of PAHs in atmospheric environment.展开更多
Carbonized rice of 8,000 yr ago was discovered in Henan Province by researchers in Geography Dept, Xuzhou Teachers’ College. This carbonized rice was of 1,000 yr earlier than the carbonized rice discovered in Hemudu,...Carbonized rice of 8,000 yr ago was discovered in Henan Province by researchers in Geography Dept, Xuzhou Teachers’ College. This carbonized rice was of 1,000 yr earlier than the carbonized rice discovered in Hemudu, Zhejiang Province. This finding might prove that the Huaihe River Valley was the origin of the Chinese rice.展开更多
Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was...Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites.展开更多
Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nit...Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nitrogen-doped hard carbon nanofibers(NHCNFs)were prepared by a lowtemperature carbonization treatment assisted with electrospinning technology.Density functional theory analysis elucidates the incorporation of nitrogen heteroatoms with various chemical states into carbon matrix would significantly alter the total electronic configurations,leading to the robust adsorption and efficient diffusion of Na atoms on electrode interface.The obtained material carbonized at 600°C(NHCNF-600)presented a reversible specific capacity of 191.0 mAh g^(−1)and no capacity decay after 200 cycles at 1 A g^(−1).It was found that the sodium-intercalated degree had a correlation with the electrochemical impedance.A sodium-intercalated potential of 0.2 V was adopted to lower the electrochemical impedance.The constructed sodium-ion capacitor with activated carbon cathode and presodiated NHCNF-600 anode can present an energy power density of 82.1 Wh kg^(−1)and a power density of 7.0 kW kg^(−1).展开更多
Trace zeolitic imidazolate framework-8(ZIF-8)-decorated activated carbon(AC)pellets were synthesized by a facile wet impregnation technique.After pyrolysis of the above composite material,the obtained carbon had a lar...Trace zeolitic imidazolate framework-8(ZIF-8)-decorated activated carbon(AC)pellets were synthesized by a facile wet impregnation technique.After pyrolysis of the above composite material,the obtained carbon had a large surface area and pore volume,with traces of Zn on its surface.Subsequently,the capacity of the ZIF8/AC samples to adsorb and remove phenol from aqueous media was evaluated in both batch and column experimental setups.The equilibrium adsorption capacity reached 155.24 mg·g^(-1),which was 2.3 times greater than that of the pure AC(46.24 mg·g^(-1)).In addition,adsorption kinetics were examined by pseudofirst and pseudosecond order models,and adsorption isotherms were fitted into Langmuir and Freundlich equations.The adsorbent could be easily filtered from the solution and washed with methanol and water,while maintaining an efficiency N90% after 4 cycles.The above results make it a potentially reusable candidate for water purification.展开更多
Phenolic compounds constitute one of the major pollutants in the modern world. Although many physical and chemical treatment technologies for their removal exist, most of them are economically not feasible. The presen...Phenolic compounds constitute one of the major pollutants in the modern world. Although many physical and chemical treatment technologies for their removal exist, most of them are economically not feasible. The present study was aimed at using silk cotton hull, a potent agricultural waste as an adsobent for removal of 2,4-dichlorophenol (2,4-DCP), which was used as a model phenolic compound. The process parameters were investigated and optimized conditions were determined. The equilibrium time was found to ...展开更多
The activated carbon(AC)was prepared from Solidago Canadensis(SC),an alien invasive plant.The plant was firstly carbonized under nitrogen at 400 ℃ for 90 min in an electrical furnace,and then the carbonized product w...The activated carbon(AC)was prepared from Solidago Canadensis(SC),an alien invasive plant.The plant was firstly carbonized under nitrogen at 400 ℃ for 90 min in an electrical furnace,and then the carbonized product was activated with KOH through microwave radiation.Effects of KOH/C ratio,microwave power,microwave radiation time on the adsorption capacities and yield of AC were evaluated.It indicated that the optimum conditions were KOH/C ratio 2 g/g,microwave power 700 W,and microwave radiation time 6 min.The carbonation process of SC was analyzed by thermogravimetry(TG).The pore structural parameters and surface functional groups of the AC were characterized by nitrogen adsorption-desorption and Fourier Transformed Infrared Spectroscopy(FTIR),respectively.The activation yield,the surface area,the average pore size,and the average micropore size of AC prepared from optimum conditions were 53.75%,1 888 m2/g,0.567 nm,and 0.488 nm,respectively.The adsorption amounts of AC were 302.4 mg/g for methylene blue and 1 470.27 mg/g for iodine.展开更多
Two types of mesocarbon microbeads(MCMB), one of which was green sphere and the other carbonized at 1000 ℃, were used to modify coal tar pitches, and their influences on the development of carbonaceous mesophase in c...Two types of mesocarbon microbeads(MCMB), one of which was green sphere and the other carbonized at 1000 ℃, were used to modify coal tar pitches, and their influences on the development of carbonaceous mesophase in coal tar pitches were investigated. Optical microscopy was used to observe the changes caused by the additives. The green MCMB could promote the growth of mesophase spheres. When the holding time at the final temperature was prolonged to 100 min, the green MCMB-modified pitch would produce excellent bulk mesophase. Carbonized MCMB prohibited the coalescence of mesophase spheres and was beneficial to forming super large mesophase spheres. In the green MCMB-modified pitch, mesophase spheres grew up using the added MCMB spheres as nuclei, i.e. the green MCMB continued to grow during heat-treatment, which accelerated the formation, growth, and coalescence of mesophase spheres. For carbonized MCMB, their active sites were passivated and they could not continue to grow. These inert spheres could aggregate around the newly-formed mesophase spheres, prohibiting the growth and coalescence of the mesophase spheres.展开更多
The use of carbonized wood in various functional devices is attracting considerable attention due to its low cost,vertical channels,and high electrical conduction.However,the conventional carbonization method requires...The use of carbonized wood in various functional devices is attracting considerable attention due to its low cost,vertical channels,and high electrical conduction.However,the conventional carbonization method requires a long processing time and an inert atmosphere.Here,a microwave-assisted ultrafast carbonization technique was developed that carbonizes natural wood in seconds without the need for an inert atmosphere,and the obtained aligned-porous carbonized wood provided an excellent electrochemical performance as an anode material for lithium-ion batteries.This ultrafast carbonization technique simultaneously produced ZnO nanoparticles during the carbonization process that were uniformly distributed on the alignedporous carbon.The hierarchical structure of carbonized wood functionalized with ZnO nanoparticles was used as a host for achieving high-performance lithium-sulfur batteries:the highly conductive carbonized wood framework with vertical channels provided good electron transport pathways,and the homogeneously dispersed ZnO nanoparticles effectively adsorbed lithium polysulfide and catalyzed its conversion reactions.In summary,a new method was developed to realize the ultrafast carbonization of biomass materials with decorated metal oxide nanoparticles.展开更多
Carbonized metallic organic frameworks(CMOF)have been attracting attention in microwave absorption(MA)research area because of their diverse structures,tunable compositions,and rich porosity.Herein,structure regulatio...Carbonized metallic organic frameworks(CMOF)have been attracting attention in microwave absorption(MA)research area because of their diverse structures,tunable compositions,and rich porosity.Herein,structure regulation on metal clusters in CMOF is achieved by tuning the interaction strength between metals and ligands to enhance microwave absorption performance.Due to relatively weak interaction among copper cations and ligands,copper nanoclusters(CuNC)can be uniformly formed and embedded within the cobalt/zinc(Co/Zn)CMOF.Firstly,copper cations are added to the Co/Zn bimetallic zeolitic imidazolate frameworks(ZIFs).Secondly,the CMOF composite particles with CuNCs(CuNCs/CoZn-CMOF)were developed by a pyrolysis process.The CuNCs/CoZn-CMOF with an appropriate amount of CuNCs can harmonize both dielectric and magnetic losses.As a result,the minimum reflection loss(RLmin)reaches–45.1 dB at a matching thickness of 2.30 mm and the effective absorption bandwidth(EAB)is 8.80 GHz at a thickness of 3.10 mm.The broadband response to electromagnetic waves is attributed to interfacial polarization at CuNCs surface and heterogeneous interfaces,impedance matching and multiple scattering of electromagnetic waves.This study provides a feasible method to develop CMOF microwave absorption materials with high EAB values.展开更多
Carbonized polymer dots(CPDs)as one type of carbon dots have attracted widespread attention in recent years.The proposal of the“shell–core”structure of CPDs leads to further thinking about the association between t...Carbonized polymer dots(CPDs)as one type of carbon dots have attracted widespread attention in recent years.The proposal of the“shell–core”structure of CPDs leads to further thinking about the association between their special structures and luminescent properties.In recent years,great progress has been made in the field of CPD-based room-temperature phosphorescent materials.This review pays particular attention to how the special“core–shell”structure of CPDs influences the activation of roomtemperature phosphorescence(RTP).The strategies and vital factors to activate RTP for CPD-based materials in both solid state and water were reviewed in detail to elaborate on the effect of the special structure on RTP generation.Furthermore,some perspectives on the current challenges were also provided to guide the further development of CPD-based room-temperature phosphorescent materials.展开更多
Thermochromic smart windows have gained increasing popularity in light modulation and energy management in buildings.However,the fabrication of flexible thermochromic smart windows with high luminous transmittance(Tlu...Thermochromic smart windows have gained increasing popularity in light modulation and energy management in buildings.However,the fabrication of flexible thermochromic smart windows with high luminous transmittance(Tlum),tailorable critical temperature(τc),strong solar modulation ability(ΔTsol),and long-term durability remains a huge challenge.In this study,hydrogel-based thermochromic smart windows are fabricated by sandwiching thermochromic hydrogels of polyallylamine hydrochloride,polyacrylic acid,and carbonized polymer dots(CPDs)complexes between two pieces of transparent substrates.Benefiting from the incorporation of nanosized CPDs,the thermochromic hydrogel has an ultrahigh Tlum of~98.7%,a desirableτc of~24.2℃,aΔTsol of~89.3%and a rapid transition time of~3 s from opaque state to transparent state.Moreover,the thermochromic hydrogel exhibits excellent anti-freezing ability,tight adhesion toward various substrates,and excellent self-healing capability.The self-healing capability enables the fabrication of large-area smart windows by welding multiple hydrogel pieces.The smart windows retain their original thermochromic properties after being stored under ambient conditions for at least 147 days or undergoing 10,000 uninterrupted heating/cooling cycles.The model houses with smart windows can achieve a temperature reduction of 9.2℃,demonstrating the excellent indoor temperature modulation performance of the smart windows.展开更多
Gasification is one of the most significant and well-researched pathways to produce energy from biomass among the different options available.It is a conversion through thermo-chemical process that takes place within ...Gasification is one of the most significant and well-researched pathways to produce energy from biomass among the different options available.It is a conversion through thermo-chemical process that takes place within a gasifier,with interconnected factors that have an impact on how well the gasifier works.Gasification of carbonized biomass,which has a variety of effects on both the gasification process and the final product,is a significant method of producing energy from raw biomass that contains a lot of moisture or has non-homogeneous morphology.Although carbonized biomass has the potential to eliminate or significantly reduce tar formation,which is the most difficult aspect of biomass gasifier design and operation,it has not received the attention it merits even though gasification of biomass is a well-known conversion process with extensive research and development spanning all sectors of the process.This review gathers and analyzes the growing number of experimental and numerical modeling approaches in gasification of carbonized biomass based on exact conditions such as type of modeling considerations,feedstock,gasifier,and assessed parameters.The study also provides an overview of various models,such as equilibrium and kinetic rate models and numerical simulations of carbonized biomass gasification schemes based on computational fluid dynamics and Aspen Plus,while comparing the modeling approaches and results for each type of models that are described in the literature.Also,this review encompasses a broad variety of technologies,from laboratory reactors to industrial scale.Overall,this review offers a brief overview of the modeling decisions that must be taken at the beginning of a modeling research.展开更多
Seawater electrolysis for sustainable hydrogen fuel production emerges as an auspicious practice to decarbonize the global energy sector [1]. However, direct seawater electrolysis is severely challenged by the corrosi...Seawater electrolysis for sustainable hydrogen fuel production emerges as an auspicious practice to decarbonize the global energy sector [1]. However, direct seawater electrolysis is severely challenged by the corrosion of anodes by chloride ions, the unwanted chloride oxidation reaction (Cl OR), and the low activity and high cost of catalysts [2].展开更多
基金Projects(5117916851308310)supported by the National Natural Science Foundation of China+1 种基金Project(LQ13E080007)supported by Zhejiang Provincial Natural Science Foundation,ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Jiangsu Province,China
文摘Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.
文摘Silicon carbide (SiC) has been prepared by passing natural gas over (100) oriented hot Si substrate at different temperatures in the range 930~1000℃. Reaction times of 60 and 90 min are used.Depth profile, using Auger Electron Spectroscopy, shows the formation of SiC under a thin coating of carbon for the samples prepared at 930 and 950℃. Annealing, at 1050℃ for 12 h,results in a more pronounced formation of SiC. It is found that at the temperature of 1000℃and reaction times of 60 and 90 min, a hard diamond-like coating is formed.
基金Supported by National Science and Technology Project of the Ministry of Science and Technology in the 13th Five-Year Plan Period(2015BAC05B02)Key Technology R&D Program of Sichuan Province,China(2015SZ0034)Innovating Research Program of Postgraduates of Southwest Minzu University in2016(CX2016SZ038)
文摘[Objectives] To optimize the extraction process of total flavonoids from Sanguisorbae Radix and carbonized Sanguisorba root,compare quality of different batches of Sanguisorbae Radix,study the effects of processing on the content of flavonoids,and provide scientific basis for reasonable utilization of Sanguisorbae Radix. [Methods] Test samples were prepared by heating,refluxing,and extraction,the extraction process was optimized by orthogonal experiment design,color was developed by NaNO_2-Al( NO_3)3-NaOH,and total flavonoids were measured by UV method at the wavelength of 510 nm. [Results] The linear relationship of rutin was excellent in the concentration range of 0. 1248 mg/mL-0. 5712 mg/mL,R^2= 0. 9997; the average recovery was 99. 67% and the RSD was 0. 70%. The optimum extraction conditions were as follows: the volume fraction of ethanol was 50%,the extraction temperature was 90℃,the extraction time was 90 min,and the solid-to-liquid ratio was 1∶ 20( g/mL). [Conclusions] After optimization of the extraction process,the extraction rate of total flavonoids in samples of Sanguisorbae Radix was significantly increased; there was certain difference in the content of total flavonoids between different batches of Sanguisorbae Radix and processed products; the total flavonoids significantly declines in carbonized sanguisorba root,and the influence of processing on its curative effect was to be further studied.
文摘Zinc oxide nanoparticles(ZnOnp) are molecular nanoparticles synthesized by a chemical precipitation method from zinc nitrate tetrahydrate and sodium hydroxide.Carbonized sawdust(CSD) was prepared from sawdust obtained from a local wood mill.The matrix of both provides a better material as an adsorbent.The present study applied the functionality of ZnOnp,CSD,and ZnOnp-CSD matrix as adsorbent materials for the removal of Pb(Ⅱ) ions from aqueous solution.The method of batch process was employed to investigate the potential of the adsorbents.The influence of pH,contact time,initial concentration of adsorbate,the dosage of adsorbents,and the temperature of adsorbate-adsorbent mixture on the adsorption capacity were revealed.The adsorption isotherm studies indicate that both Freundlich and Langmuir isotherms were suitable to express the experimental data obtained with theoretical maximum adsorption capacities(q_(m)) of 70.42,87.72,and 92.59 mg·g^(-1) for the adsorption of Pb(Ⅱ) ions onto ZnOnp,CSD,and ZnOnp-CSD matrix,respectively.The separation factors(R_(L)) calculated showed that the use of the adsorbents for the removal of Pb(Ⅱ) ions is a feasible process with R_(L) <1.The thermodynamic parameters obtained revealed that the processes are endothermic,feasible,and spontaneous in nature at 25-50℃.Evaluation of the kinetic model elected that the processes agreed better with pseudo-second order where the values of rate constant(k_2) obtained for the adsorption of Pb(Ⅱ) ions onto ZnOnp,CSD,and ZnOnp-CSD matrix are 0.00149,0.00188,and 0.00315 g·mg^(-1)·min^(-1),respectively.The reusability potential examined for four cycles indicated that the adsorbents have better potential and economic value of reuse and the ZnOnp-CSD matrix indicates improved adsorbent material to remove Pb(Ⅱ) ions from aqueous solution.
基金financially supported by the National Natural Science Foundation of China(No.51641209)。
文摘Humic acid(HA)was carbonized at 300,400 and 500℃ and then functionalized with 1 wt%–12 wt%Fe(Ⅲ)respectively[CHA300/400/500-Fe(Ⅲ)].Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous tetracycline(TC:25 mg·L^-1)was studied.The adsorption equilibrium time for CHA400-Fe(Ⅲ)to TC was 6 h faster and the adsorption removal efficiency(Re)was two times higher than that of HA/CHA.The adsorption Reof CHA400-Fe(Ⅲ)loaded 10%iron[CHA400-(10%)Fe(Ⅲ)]to TC could reach 99.8%at 8 h and still kept80.6%after 8 cycles.The adsorption kinetics were well fitted to the pseudo-second-order equation and the adsorption isotherms could be well delineated via Langmuir equations(R^2N 0.99),indicating that the homogeneous chemical adsorption of TC occurred on the adsorbents.The main adsorption mechanisms of TC were complexation Fe(III)and hydrophobic distribution.Electropositive and electronegative repulsion between TC and CHA400-(10%)Fe(Ⅲ)at lowly p H(2)and highly p H(8–10)respectively,leaded to the relatively low adsorption capacity and more notable influence of ion concentration.When the p H was between 4 and 8,TC mainly existed in neutral molecules(TCH2),so the influence of ion concentration was not obvious.The dynamic adsorption results showed that the CHA400-(10%)Fe(Ⅲ)could continuously treat about 2.4 L TC(27 mg·L^-1)wastewater with the effluent concentration as low as 0.068 mg·L^-1.Our study suggested a broad application prospect of a new,effective,lowcost and environment-friendly adsorbent CHA400-(10%)Fe(Ⅲ)for treatment of low-concentration TC polluted wastewater.
基金This research is supported by the Science and Technology Department of Jilin Province[20210202128NC]The People’s Republic of China Ministry of Science and Technology[2018YFF0213606-03]Jilin Province Development and Reform Commission[2019C021].
文摘Flexible strain sensor has attracted much attention because of its potential application in human motion detection.In this work,the prepared strain sensor was obtained by encapsulating electrospun carbonized sponge(CS)with room temperature vulcanized silicone rubber(RTVS).In this paper,the formation mechanism of conductive sponge was studied.Based on the combination of carbonized sponge and RTVS,the strain sensing mechanism and piezoresistive properties are discussed.After research and testing,the CS/RTVS flexible strain sensor has excellent fast response speed and stability,and the maximum strain coefficient of the sensor is 136.27.In this study,the self-developed CS/RTVS sensor was used to monitor the movements of the wrist joint,arm elbow joint and fingers in real time.Research experiments show that CS/RTVS flexible strain sensor has good application prospects in the field of human motion monitoring.
基金The Natural Science Foundation of Jangsu Province. No. BK93124313
文摘A new sampling method of ambient air analysis using carbonized fibrous resin as a sorbent for polycyclic aromatic hydrocarbons (PAHs) was reported. The physical and chemical properties of the carbonized fibrous resins were measured. The sample pretreatment with ultrasonic extraction and subsequent clean-up elution through a silica gel column was optimized. The suitable ultrasonic extraction conditions were selected as follows: resin weight was 1.5 g, ultrasonic extraction time 20 min, volume of extraction solvent 100 ml and extraction operation times 2~3. The concentrated extractable organic matter was submitted to next step of clean-up procedure of adsorption chromatography on silica gel column/n-hexane and a mixture of dichloromethene:n-hexane solution 2:3 (v/v). The PAHs fractions in the real samples from Changzhou, China were particularly analyzed using GC-MS data system and the data of mass spectra, retention times and scan numbers of the real samples were compared with that of the standards of 16 PAHs listed by the US EPA as 損riority pollutants?of the environment. The analysis of the real samples indicates that the carbonized fibrous resin is a good sorbent. The pretreatment of samples of ambient air with carbonized fibrous resin as a sorbent for PAHs is proved to be reliable and might be used for the procedure of the determination of PAHs in atmospheric environment.
文摘Carbonized rice of 8,000 yr ago was discovered in Henan Province by researchers in Geography Dept, Xuzhou Teachers’ College. This carbonized rice was of 1,000 yr earlier than the carbonized rice discovered in Hemudu, Zhejiang Province. This finding might prove that the Huaihe River Valley was the origin of the Chinese rice.
基金Project(52064032)supported by the National Natural Science Foundation of ChinaProjects(2019ZE001,202002AB080001)supported by the Yunnan Science and Technology Projects,ChinaProject(YNWR-QNBJ-2018-005)supported by the Yunnan Ten Thousand Talents Plan Young&Elite Talents,China。
文摘Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites.
基金supported by the National Natural Science Foundation of China(No.51907193,51822706,and 51777200)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-JSC047)the Youth Innovation Promotion Association,CAS(No.2020145)
文摘Carbon nanofiber(CNF)was widely utilized in the field of electrochemical energy storage due to its superiority of conductivity and mechanics.However,CNF was generally prepared at relatively high temperature.Herein,nitrogen-doped hard carbon nanofibers(NHCNFs)were prepared by a lowtemperature carbonization treatment assisted with electrospinning technology.Density functional theory analysis elucidates the incorporation of nitrogen heteroatoms with various chemical states into carbon matrix would significantly alter the total electronic configurations,leading to the robust adsorption and efficient diffusion of Na atoms on electrode interface.The obtained material carbonized at 600°C(NHCNF-600)presented a reversible specific capacity of 191.0 mAh g^(−1)and no capacity decay after 200 cycles at 1 A g^(−1).It was found that the sodium-intercalated degree had a correlation with the electrochemical impedance.A sodium-intercalated potential of 0.2 V was adopted to lower the electrochemical impedance.The constructed sodium-ion capacitor with activated carbon cathode and presodiated NHCNF-600 anode can present an energy power density of 82.1 Wh kg^(−1)and a power density of 7.0 kW kg^(−1).
基金This work was supported by National Natural Science Foundation of China (21606252)the Key Research and Development Program of Xuzhou (KC19214)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Trace zeolitic imidazolate framework-8(ZIF-8)-decorated activated carbon(AC)pellets were synthesized by a facile wet impregnation technique.After pyrolysis of the above composite material,the obtained carbon had a large surface area and pore volume,with traces of Zn on its surface.Subsequently,the capacity of the ZIF8/AC samples to adsorb and remove phenol from aqueous media was evaluated in both batch and column experimental setups.The equilibrium adsorption capacity reached 155.24 mg·g^(-1),which was 2.3 times greater than that of the pure AC(46.24 mg·g^(-1)).In addition,adsorption kinetics were examined by pseudofirst and pseudosecond order models,and adsorption isotherms were fitted into Langmuir and Freundlich equations.The adsorbent could be easily filtered from the solution and washed with methanol and water,while maintaining an efficiency N90% after 4 cycles.The above results make it a potentially reusable candidate for water purification.
基金the Chonbuk National Uni-versity Post-Doctoral Program (2006)Research Centerfor Industrial Development of Biofood Materials in the Chonbuk National University, Chonju, KoreaThe centeris designated as a Regional Research Center appointed by the Korea Science and Engineering Foundation (KOSEF),Jeollabuk-do Provincial Government and Chonbuk Nation-al University
文摘Phenolic compounds constitute one of the major pollutants in the modern world. Although many physical and chemical treatment technologies for their removal exist, most of them are economically not feasible. The present study was aimed at using silk cotton hull, a potent agricultural waste as an adsobent for removal of 2,4-dichlorophenol (2,4-DCP), which was used as a model phenolic compound. The process parameters were investigated and optimized conditions were determined. The equilibrium time was found to ...
基金Shanghai Leading Academic Discipline Project,China(No.B604)
文摘The activated carbon(AC)was prepared from Solidago Canadensis(SC),an alien invasive plant.The plant was firstly carbonized under nitrogen at 400 ℃ for 90 min in an electrical furnace,and then the carbonized product was activated with KOH through microwave radiation.Effects of KOH/C ratio,microwave power,microwave radiation time on the adsorption capacities and yield of AC were evaluated.It indicated that the optimum conditions were KOH/C ratio 2 g/g,microwave power 700 W,and microwave radiation time 6 min.The carbonation process of SC was analyzed by thermogravimetry(TG).The pore structural parameters and surface functional groups of the AC were characterized by nitrogen adsorption-desorption and Fourier Transformed Infrared Spectroscopy(FTIR),respectively.The activation yield,the surface area,the average pore size,and the average micropore size of AC prepared from optimum conditions were 53.75%,1 888 m2/g,0.567 nm,and 0.488 nm,respectively.The adsorption amounts of AC were 302.4 mg/g for methylene blue and 1 470.27 mg/g for iodine.
基金National Natural Science Foundation of China (No 50172034)
文摘Two types of mesocarbon microbeads(MCMB), one of which was green sphere and the other carbonized at 1000 ℃, were used to modify coal tar pitches, and their influences on the development of carbonaceous mesophase in coal tar pitches were investigated. Optical microscopy was used to observe the changes caused by the additives. The green MCMB could promote the growth of mesophase spheres. When the holding time at the final temperature was prolonged to 100 min, the green MCMB-modified pitch would produce excellent bulk mesophase. Carbonized MCMB prohibited the coalescence of mesophase spheres and was beneficial to forming super large mesophase spheres. In the green MCMB-modified pitch, mesophase spheres grew up using the added MCMB spheres as nuclei, i.e. the green MCMB continued to grow during heat-treatment, which accelerated the formation, growth, and coalescence of mesophase spheres. For carbonized MCMB, their active sites were passivated and they could not continue to grow. These inert spheres could aggregate around the newly-formed mesophase spheres, prohibiting the growth and coalescence of the mesophase spheres.
基金supported by the National Natural Science Foundation of China (No.52222311)the Shanghai RisingStar Program (20QA1406600)+2 种基金ChEM,SPST of Shanghai Tech University (#EM02161943)Shanghai Science and Technology Plan (21DZ2260400)Double First-Class Initiative Fund of Shanghai Tech University for supporting
文摘The use of carbonized wood in various functional devices is attracting considerable attention due to its low cost,vertical channels,and high electrical conduction.However,the conventional carbonization method requires a long processing time and an inert atmosphere.Here,a microwave-assisted ultrafast carbonization technique was developed that carbonizes natural wood in seconds without the need for an inert atmosphere,and the obtained aligned-porous carbonized wood provided an excellent electrochemical performance as an anode material for lithium-ion batteries.This ultrafast carbonization technique simultaneously produced ZnO nanoparticles during the carbonization process that were uniformly distributed on the alignedporous carbon.The hierarchical structure of carbonized wood functionalized with ZnO nanoparticles was used as a host for achieving high-performance lithium-sulfur batteries:the highly conductive carbonized wood framework with vertical channels provided good electron transport pathways,and the homogeneously dispersed ZnO nanoparticles effectively adsorbed lithium polysulfide and catalyzed its conversion reactions.In summary,a new method was developed to realize the ultrafast carbonization of biomass materials with decorated metal oxide nanoparticles.
基金We thank the National Natural Science Foundation of China(No.52173264)for financial support。
文摘Carbonized metallic organic frameworks(CMOF)have been attracting attention in microwave absorption(MA)research area because of their diverse structures,tunable compositions,and rich porosity.Herein,structure regulation on metal clusters in CMOF is achieved by tuning the interaction strength between metals and ligands to enhance microwave absorption performance.Due to relatively weak interaction among copper cations and ligands,copper nanoclusters(CuNC)can be uniformly formed and embedded within the cobalt/zinc(Co/Zn)CMOF.Firstly,copper cations are added to the Co/Zn bimetallic zeolitic imidazolate frameworks(ZIFs).Secondly,the CMOF composite particles with CuNCs(CuNCs/CoZn-CMOF)were developed by a pyrolysis process.The CuNCs/CoZn-CMOF with an appropriate amount of CuNCs can harmonize both dielectric and magnetic losses.As a result,the minimum reflection loss(RLmin)reaches–45.1 dB at a matching thickness of 2.30 mm and the effective absorption bandwidth(EAB)is 8.80 GHz at a thickness of 3.10 mm.The broadband response to electromagnetic waves is attributed to interfacial polarization at CuNCs surface and heterogeneous interfaces,impedance matching and multiple scattering of electromagnetic waves.This study provides a feasible method to develop CMOF microwave absorption materials with high EAB values.
基金supported by the National Science Foundation of China(NSFC)under grant no.22035001.
文摘Carbonized polymer dots(CPDs)as one type of carbon dots have attracted widespread attention in recent years.The proposal of the“shell–core”structure of CPDs leads to further thinking about the association between their special structures and luminescent properties.In recent years,great progress has been made in the field of CPD-based room-temperature phosphorescent materials.This review pays particular attention to how the special“core–shell”structure of CPDs influences the activation of roomtemperature phosphorescence(RTP).The strategies and vital factors to activate RTP for CPD-based materials in both solid state and water were reviewed in detail to elaborate on the effect of the special structure on RTP generation.Furthermore,some perspectives on the current challenges were also provided to guide the further development of CPD-based room-temperature phosphorescent materials.
基金supported by the National Natural Science Foundation of China (No.21935004).
文摘Thermochromic smart windows have gained increasing popularity in light modulation and energy management in buildings.However,the fabrication of flexible thermochromic smart windows with high luminous transmittance(Tlum),tailorable critical temperature(τc),strong solar modulation ability(ΔTsol),and long-term durability remains a huge challenge.In this study,hydrogel-based thermochromic smart windows are fabricated by sandwiching thermochromic hydrogels of polyallylamine hydrochloride,polyacrylic acid,and carbonized polymer dots(CPDs)complexes between two pieces of transparent substrates.Benefiting from the incorporation of nanosized CPDs,the thermochromic hydrogel has an ultrahigh Tlum of~98.7%,a desirableτc of~24.2℃,aΔTsol of~89.3%and a rapid transition time of~3 s from opaque state to transparent state.Moreover,the thermochromic hydrogel exhibits excellent anti-freezing ability,tight adhesion toward various substrates,and excellent self-healing capability.The self-healing capability enables the fabrication of large-area smart windows by welding multiple hydrogel pieces.The smart windows retain their original thermochromic properties after being stored under ambient conditions for at least 147 days or undergoing 10,000 uninterrupted heating/cooling cycles.The model houses with smart windows can achieve a temperature reduction of 9.2℃,demonstrating the excellent indoor temperature modulation performance of the smart windows.
基金support from the project of the National Natural Science Foundation of China(22278142)the social development science and technology tackling roject of 2021“Scientific and Innovative Action Plan of Shanghai”(21DZ1209000).
文摘Gasification is one of the most significant and well-researched pathways to produce energy from biomass among the different options available.It is a conversion through thermo-chemical process that takes place within a gasifier,with interconnected factors that have an impact on how well the gasifier works.Gasification of carbonized biomass,which has a variety of effects on both the gasification process and the final product,is a significant method of producing energy from raw biomass that contains a lot of moisture or has non-homogeneous morphology.Although carbonized biomass has the potential to eliminate or significantly reduce tar formation,which is the most difficult aspect of biomass gasifier design and operation,it has not received the attention it merits even though gasification of biomass is a well-known conversion process with extensive research and development spanning all sectors of the process.This review gathers and analyzes the growing number of experimental and numerical modeling approaches in gasification of carbonized biomass based on exact conditions such as type of modeling considerations,feedstock,gasifier,and assessed parameters.The study also provides an overview of various models,such as equilibrium and kinetic rate models and numerical simulations of carbonized biomass gasification schemes based on computational fluid dynamics and Aspen Plus,while comparing the modeling approaches and results for each type of models that are described in the literature.Also,this review encompasses a broad variety of technologies,from laboratory reactors to industrial scale.Overall,this review offers a brief overview of the modeling decisions that must be taken at the beginning of a modeling research.
基金supported by the National Key Research and Development Program of China (2021YFA1202500)Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control (2023B1212060002)+2 种基金Stable Support Plan Program of Shenzhen Natural Science Foundation (20231122110855002)High level of special funds (G03034K001) from SUSTechthe Australian Research Council (ARC) Discovery Project (DP220101139)。
文摘Seawater electrolysis for sustainable hydrogen fuel production emerges as an auspicious practice to decarbonize the global energy sector [1]. However, direct seawater electrolysis is severely challenged by the corrosion of anodes by chloride ions, the unwanted chloride oxidation reaction (Cl OR), and the low activity and high cost of catalysts [2].