Optically pure(R)-γ-and(R)-δ-lactones can be prepared by intramolecular cyclization of chiral hydroxy acids/esters reduced asymmetrically from γ-and δ-keto acids/esters using Saccharomyces cerevisiae(S.cerevisiae)...Optically pure(R)-γ-and(R)-δ-lactones can be prepared by intramolecular cyclization of chiral hydroxy acids/esters reduced asymmetrically from γ-and δ-keto acids/esters using Saccharomyces cerevisiae(S.cerevisiae) as a whole-cell biocatalyst.However,some of the enzymes catalyzing these reactions in S.cerevisiae are still unknown up to date.In this report,two carbonyl reductases,OdCRl and OdCR2,were successfully discovered,and cloned from S.cerevisiae using a genome-mining approach,and overexpressed in Escherichia coli(E.coli).Compared with OdCR1,OdCR2 can reduce 4-oxodecanoic acid and 5-oxodecanoic acid asymmetrically with higher stereoselectivity,generating(R)-γ-decalactone(99% ee) and(R)-δ-decalactone(98% ee) in 85% and 92%yields,respectively.This is the first report of native enzymes from S.cerevisiae for the enzymatic synthesis of chiral γ-and δ-lactones which is of wide uses in food and cosmetic industries.展开更多
A novel nicotinamide adenine dinucleotide phosphate(NADPH)-dependent carbonyl reductase from Kluyverornyces marxianus(KmCR) was identified, which can convert various prochiral ketone esters and ketone substrates t...A novel nicotinamide adenine dinucleotide phosphate(NADPH)-dependent carbonyl reductase from Kluyverornyces marxianus(KmCR) was identified, which can convert various prochiral ketone esters and ketone substrates to their corresponding chiral alcohols. KmCR was over-expressed in E. coli BL21(DE3), purified to homogeneity, and characterized. The purified enzyme exhibits the highest activity at 40℃ and pH=6.0. Based on the gel filtration and sodium dodecyl sulfate-polyacrylamide gel eiectrophoresis(SDS-PAGE) analysis, the monomeric protein was determined to have a molecular weight of approximate 39000. Vmax and Km of KmCR are 4.28 μmol.min^-1·mg^-1 and 0.41 mmol/L for ketone ester substrate ethyl 2-oxo-4-phenylbutyrate(OPBE), 3.09μmol.min^-1·mg^-1 and 1.21 mmol/L for cofactor NADPH, respectively. Cofactor recycle was achieved by co-expression of KmCR and glucose dehydrogenase(GDH) in E. coli. Recombinant E. coli harboring KmCR and GDH showed moderate asymmetric reduction activity towards various α- and β-ketoesters, diaryl ketone substrates. In an aqueous/butyl acetate biphasic system, the whole-cell biocatalyst was used to prepare ethyl (R)-2-hydroxy-4- phenylbutanoate[(R)-HPBE] in an e.e. of 99.5% with a space-time yield of 433.6 g.L-1.d-1 and a yield of 80.3% at 270 g/L OPBE.展开更多
Prostaglandins (PGs) play a critical role in porcine reproduction, of which prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) exert antiluteolytic and luteolysis actions, respectively. As a rate-limiting enz...Prostaglandins (PGs) play a critical role in porcine reproduction, of which prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) exert antiluteolytic and luteolysis actions, respectively. As a rate-limiting enzyme, carbonyl reductase 1 (CBR1) catalyzes the conversion of PGE2 to PGF2a. A high ratio of PGE2:PGF2a is beneficial to the establishment and maintenance of porcine pregnancy. PG is essential for the establishment of pregnancy which resembles the proinflammatory response and nuclear factor KB (NF-KB) is involved in the process. Bioinformatic analysis has shown that NF-KB is a possible factor bound to two cis-regulatory elements in CBRI promoter. In this study, we cloned the 2997 bp (-2875/+122) of the promoter, and constructed six 5'-deleted dual-luciferase reporter recombinant vectors. In endometrial cells, the region of P2 (-16401+7) exhibited the greatest transcriptional activity at driving luciferase expression, but not significantly different from that of P1 (-2089/+7). The activity of P1, P2, and P3 (-1019/+7) was highly significantly higher than that of others (P〈0.01), suggesting that two positive regulatory elements were likely present in the regions of -1640/-1019 and -1019/-647. The results also showed that the -1640/ -647 region was indispensable for the promoter. The results of chromatin immunoprecipitation (CHIP) demonstrated that the NF-KB subunit p65 binds to one site around -15451-1531. Using four reference genes, we found that the over-expression of p65 enhanced the expression of CBR1 (P〈0.05) in porcine endometrial epithelial cells, while knockdown of the p65 did not down-regulate the CBRI expression. These results indicated that NF-KB (p65) could bind to the special element of CBR1 gene promoter in porcine endometrial epithelial cells in vitro. The binding site of NF-KB was a positive regulator for the CBR1 gene promoter, but was not necessary for the basic expression.展开更多
A novel NADPH-dependent carbonyl reductase was separated from Candida parapsilosis CCTCC 203011.The enzyme gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE),which was purified t...A novel NADPH-dependent carbonyl reductase was separated from Candida parapsilosis CCTCC 203011.The enzyme gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE),which was purified through ammonium sulfate,Diethylamino Ethanol(DEAE)sepharose Fast flow(FF),phenyl-sepharose FF and blue sepharose FF chromato graphy from cell-free extract.The molecular mass of the enzyme was about 30 kDa.The optimum pH and temperature for reduction were 4.5℃ and 35℃,respectively.The Cu2+had strong restrictive effect on enzyme activity.In addition,the carbonyl reductase was an enzyme with high substrate specificity and stereo-selectivity,and showed high asymmetric reduction activity towards a-hydroxyacetophenone and ethyl 4-chloro acetoacetate.For the asymmetric reduction of a-hydroxyacetophenone and ethyl 4-chloro acetoacetate,(S)-1-phenyl-1,2-ethanediol and(R)-ethyl 4-chloro-3-hydroxybutanoate were produced by the purified enzyme,with the 100% and 94.3%e.e.value,respec-tively.Therefore,the enzyme could be one of the effective biocatalysts for asymmetric synthesis of chiral alcohols.The amino acid sequences of one peptide from the purified enzyme were analyzed by LC-MASS-MASS,and the car-bonyl reductase showed some identity to the hypothetical protein CaO19.10414 reported.展开更多
The gene which encodes(R)-specific carbonyl reductase(rCR)from Candida parapsilosis CCTCC M203011 was cloned,sequenced and compared with genes from the GenBank.The results indicated that rCR gene was 1011 bp,encoding ...The gene which encodes(R)-specific carbonyl reductase(rCR)from Candida parapsilosis CCTCC M203011 was cloned,sequenced and compared with genes from the GenBank.The results indicated that rCR gene was 1011 bp,encoding a protein of 336 amino acids with a molecular weight of 35.9 kDa,and its nucleotide sequence showed 99%similarity to those of other members of the alcohol dehydrogenase superfamily.The rCR gene could express in recombinant strain Escherichia coli JM109,and the expression plasmid could produce(R)-1-pheny-1,2-ethanediol(100%e.e.,80.14%yield)from b-hydroxyacetophenone without any additive to regenerate NAD+from NADH.展开更多
A new continuous-flow process for the enzymatic synthesis of optically pureγ-lactones,which are used as flavors and fragrances in the food and cosmetic industries,was developed in a three-dimensional microfluidic rea...A new continuous-flow process for the enzymatic synthesis of optically pureγ-lactones,which are used as flavors and fragrances in the food and cosmetic industries,was developed in a three-dimensional microfluidic reactor.The microchannels(175 mm in length,0.9 mm in depth,and 1.72 mL in volume)were carved precisely inside a single borosilicate glass(90 mm×75 mm×12 mm)with ultrafast femtosecond laser micromachining.The flow field analysis and reaction simulation showed that the mixing of substrates and enzymes was enhanced,allowing the adjustment of residence time in a wide window.SmCR_(V4),a carbonyl reductase with excellent catalytic activity and enantioselectivity towardγ/δ-keto acids,was employed for the asymmetric synthesis of various chiral lactones.30 mmol/L(R)-γ-decalactone(3g)can be obtained in 26 s with a space-time yield(STY)up to 16,877 g L^(-1)d^(-1),which is 14.4 times higher than the highest STY of batch reaction reported previously.This continuous-flow process was applied to the synthesis of 6 chiral lactones.In addition,the scaled-up synthesis of 3g was carried out in 6 cascade microreactors continuously for 6 h,demonstrating the feasibility and stability of the 3D continuous-flow process in enzymatic synthesis of optically pure compounds.展开更多
Chiral secondary alcohols with additional functional groups are frequently required as important and valuable synthons for pharmaceuticals, agricultural and other fine chemicals. With the advantages of environmentally...Chiral secondary alcohols with additional functional groups are frequently required as important and valuable synthons for pharmaceuticals, agricultural and other fine chemicals. With the advantages of environmentally benign reaction conditions, broad reaction scope, and high stereoselectivity, biocatalytic reduction of prochiral ketones of- fers significant potential in the synthesis of optically active alcohols. A CmCR homologous carbonyl reductase from Pichia guilliermondii NRRL Y-324 was successfully overexpressed. Substrate profile characterization revealed its broad substrate specificity, covering aryl ketones, aliphatic ketones and ketoesters. Furthermore, a variety of ketone substrates were asymmetrically reduced by the purified enzyme with an additionally NADPH regeneration system. The reduction system exhibited excellent enantioselectivity (~ 99% ee) in the reduction of all the aromatic ketones and ketoesters, except for 2-bromoacetophenone (93.5% ee). Semi-preparative reduction of six ketones was achieved with high enantioselectivity (〉99% ee) and isolation yields (〉80%) within 12 h. This study provides a useful guidance for further application of this enzyme in the asymmetric synthesis of chiral alcohol enantiomers.展开更多
(S)-1-(30-Bromo-20-methoxyphenyl)ethanol((S)-1b)is the key precursor for the synthesis of Lusutrombopag.The bioreduction of 1-(30-bromo-20-methoxyphenyl)ethanone(1a)offers an attractive method to access this important...(S)-1-(30-Bromo-20-methoxyphenyl)ethanol((S)-1b)is the key precursor for the synthesis of Lusutrombopag.The bioreduction of 1-(30-bromo-20-methoxyphenyl)ethanone(1a)offers an attractive method to access this important compound.Through screening the available carbonyl reductases,we obtained a carbonyl reductase from Novosphingobium aromaticivorans(CBR),which could completely convert 100 g/L of 1a to(S)-1b.Furthermore,a carbonyl reductase from Novosphingobium sp.Leaf2(NoCR)was identified to completely convert 200 g/L of 1a to(S)-1b with excellent enantioselectivity(>99%ee)and 77%isolated yield using FDH/formate system for NADH regeneration.The K_(m) and k_(cat) of recombinant NoCR towards 1a were 0.66 mmol/L and 7.5 s-1,and the catalytic efficiency k_(cat)/K_(m) was 11.3 mmol/s.L.Meanwhile,NoCR showed high catalytic activity and stereoselectivity towards acetophenone derivatives with halogen or methoxy substitution on the benzene ring,indicating that NoCR is a valuable biocatalyst with potential practical applications.展开更多
基金financially sponsored by the National Key Research and Development Program of China (2016YFA0204300, 2019YFA09005000)the National Natural Science Foundation of China (21536004, 21776085, 21871085)+2 种基金the Natural Science Foundation of Shanghai (18ZR1409900)Key Project of the Shanghai Science and Technology Committee (18DZ1112703)the Fundamental Research Funds for the Central Universities (WF1714026)。
文摘Optically pure(R)-γ-and(R)-δ-lactones can be prepared by intramolecular cyclization of chiral hydroxy acids/esters reduced asymmetrically from γ-and δ-keto acids/esters using Saccharomyces cerevisiae(S.cerevisiae) as a whole-cell biocatalyst.However,some of the enzymes catalyzing these reactions in S.cerevisiae are still unknown up to date.In this report,two carbonyl reductases,OdCRl and OdCR2,were successfully discovered,and cloned from S.cerevisiae using a genome-mining approach,and overexpressed in Escherichia coli(E.coli).Compared with OdCR1,OdCR2 can reduce 4-oxodecanoic acid and 5-oxodecanoic acid asymmetrically with higher stereoselectivity,generating(R)-γ-decalactone(99% ee) and(R)-δ-decalactone(98% ee) in 85% and 92%yields,respectively.This is the first report of native enzymes from S.cerevisiae for the enzymatic synthesis of chiral γ-and δ-lactones which is of wide uses in food and cosmetic industries.
基金the National Basic Research and Development Program of China,the National Natural Science Foundation of China,the Project of New Century Excellent Talents in University of China,the Natural Science Foundation of Jiangsu Province,China,the Program of Introducing Talents of Discipline to Universities,China,the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A novel nicotinamide adenine dinucleotide phosphate(NADPH)-dependent carbonyl reductase from Kluyverornyces marxianus(KmCR) was identified, which can convert various prochiral ketone esters and ketone substrates to their corresponding chiral alcohols. KmCR was over-expressed in E. coli BL21(DE3), purified to homogeneity, and characterized. The purified enzyme exhibits the highest activity at 40℃ and pH=6.0. Based on the gel filtration and sodium dodecyl sulfate-polyacrylamide gel eiectrophoresis(SDS-PAGE) analysis, the monomeric protein was determined to have a molecular weight of approximate 39000. Vmax and Km of KmCR are 4.28 μmol.min^-1·mg^-1 and 0.41 mmol/L for ketone ester substrate ethyl 2-oxo-4-phenylbutyrate(OPBE), 3.09μmol.min^-1·mg^-1 and 1.21 mmol/L for cofactor NADPH, respectively. Cofactor recycle was achieved by co-expression of KmCR and glucose dehydrogenase(GDH) in E. coli. Recombinant E. coli harboring KmCR and GDH showed moderate asymmetric reduction activity towards various α- and β-ketoesters, diaryl ketone substrates. In an aqueous/butyl acetate biphasic system, the whole-cell biocatalyst was used to prepare ethyl (R)-2-hydroxy-4- phenylbutanoate[(R)-HPBE] in an e.e. of 99.5% with a space-time yield of 433.6 g.L-1.d-1 and a yield of 80.3% at 270 g/L OPBE.
基金Project supported by the National Natural Science Foundation of China(No.31201771)the Earmarked Fund for China Agriculture Research System(No.CARS-36)
文摘Prostaglandins (PGs) play a critical role in porcine reproduction, of which prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) exert antiluteolytic and luteolysis actions, respectively. As a rate-limiting enzyme, carbonyl reductase 1 (CBR1) catalyzes the conversion of PGE2 to PGF2a. A high ratio of PGE2:PGF2a is beneficial to the establishment and maintenance of porcine pregnancy. PG is essential for the establishment of pregnancy which resembles the proinflammatory response and nuclear factor KB (NF-KB) is involved in the process. Bioinformatic analysis has shown that NF-KB is a possible factor bound to two cis-regulatory elements in CBRI promoter. In this study, we cloned the 2997 bp (-2875/+122) of the promoter, and constructed six 5'-deleted dual-luciferase reporter recombinant vectors. In endometrial cells, the region of P2 (-16401+7) exhibited the greatest transcriptional activity at driving luciferase expression, but not significantly different from that of P1 (-2089/+7). The activity of P1, P2, and P3 (-1019/+7) was highly significantly higher than that of others (P〈0.01), suggesting that two positive regulatory elements were likely present in the regions of -1640/-1019 and -1019/-647. The results also showed that the -1640/ -647 region was indispensable for the promoter. The results of chromatin immunoprecipitation (CHIP) demonstrated that the NF-KB subunit p65 binds to one site around -15451-1531. Using four reference genes, we found that the over-expression of p65 enhanced the expression of CBR1 (P〈0.05) in porcine endometrial epithelial cells, while knockdown of the p65 did not down-regulate the CBRI expression. These results indicated that NF-KB (p65) could bind to the special element of CBR1 gene promoter in porcine endometrial epithelial cells in vitro. The binding site of NF-KB was a positive regulator for the CBR1 gene promoter, but was not necessary for the basic expression.
基金This work was supported by the National Natural Science Foundation of China(Grant No.20376031)the National Key Basic Research and Development Program of China(973 Program)(Grant No.2003CB716008)+1 种基金the Program for New Century Excellent Talents in University,Ministry of Education,China(Grant No.NCET-04-0498)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.PCSIRT,IRT0532).
文摘A novel NADPH-dependent carbonyl reductase was separated from Candida parapsilosis CCTCC 203011.The enzyme gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE),which was purified through ammonium sulfate,Diethylamino Ethanol(DEAE)sepharose Fast flow(FF),phenyl-sepharose FF and blue sepharose FF chromato graphy from cell-free extract.The molecular mass of the enzyme was about 30 kDa.The optimum pH and temperature for reduction were 4.5℃ and 35℃,respectively.The Cu2+had strong restrictive effect on enzyme activity.In addition,the carbonyl reductase was an enzyme with high substrate specificity and stereo-selectivity,and showed high asymmetric reduction activity towards a-hydroxyacetophenone and ethyl 4-chloro acetoacetate.For the asymmetric reduction of a-hydroxyacetophenone and ethyl 4-chloro acetoacetate,(S)-1-phenyl-1,2-ethanediol and(R)-ethyl 4-chloro-3-hydroxybutanoate were produced by the purified enzyme,with the 100% and 94.3%e.e.value,respec-tively.Therefore,the enzyme could be one of the effective biocatalysts for asymmetric synthesis of chiral alcohols.The amino acid sequences of one peptide from the purified enzyme were analyzed by LC-MASS-MASS,and the car-bonyl reductase showed some identity to the hypothetical protein CaO19.10414 reported.
基金This study was supported by the National Basic Research Program of China(No.2003CB716008)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT,IRT0532).
文摘The gene which encodes(R)-specific carbonyl reductase(rCR)from Candida parapsilosis CCTCC M203011 was cloned,sequenced and compared with genes from the GenBank.The results indicated that rCR gene was 1011 bp,encoding a protein of 336 amino acids with a molecular weight of 35.9 kDa,and its nucleotide sequence showed 99%similarity to those of other members of the alcohol dehydrogenase superfamily.The rCR gene could express in recombinant strain Escherichia coli JM109,and the expression plasmid could produce(R)-1-pheny-1,2-ethanediol(100%e.e.,80.14%yield)from b-hydroxyacetophenone without any additive to regenerate NAD+from NADH.
基金financially sponsored by the National Key Research and Development Program of China(No.2021YFC2102804)the National Natural Science Foundation of China(No.22078096)。
文摘A new continuous-flow process for the enzymatic synthesis of optically pureγ-lactones,which are used as flavors and fragrances in the food and cosmetic industries,was developed in a three-dimensional microfluidic reactor.The microchannels(175 mm in length,0.9 mm in depth,and 1.72 mL in volume)were carved precisely inside a single borosilicate glass(90 mm×75 mm×12 mm)with ultrafast femtosecond laser micromachining.The flow field analysis and reaction simulation showed that the mixing of substrates and enzymes was enhanced,allowing the adjustment of residence time in a wide window.SmCR_(V4),a carbonyl reductase with excellent catalytic activity and enantioselectivity towardγ/δ-keto acids,was employed for the asymmetric synthesis of various chiral lactones.30 mmol/L(R)-γ-decalactone(3g)can be obtained in 26 s with a space-time yield(STY)up to 16,877 g L^(-1)d^(-1),which is 14.4 times higher than the highest STY of batch reaction reported previously.This continuous-flow process was applied to the synthesis of 6 chiral lactones.In addition,the scaled-up synthesis of 3g was carried out in 6 cascade microreactors continuously for 6 h,demonstrating the feasibility and stability of the 3D continuous-flow process in enzymatic synthesis of optically pure compounds.
基金This work was financially supported by the National Natural Science Foundation of China (No 21276082), Ministry of Science and Technology, P. R. China (No.2011CB710800), China National Special Fund for State Key Laboratory of Bioreactor Engineering (No. 2060204).
文摘Chiral secondary alcohols with additional functional groups are frequently required as important and valuable synthons for pharmaceuticals, agricultural and other fine chemicals. With the advantages of environmentally benign reaction conditions, broad reaction scope, and high stereoselectivity, biocatalytic reduction of prochiral ketones of- fers significant potential in the synthesis of optically active alcohols. A CmCR homologous carbonyl reductase from Pichia guilliermondii NRRL Y-324 was successfully overexpressed. Substrate profile characterization revealed its broad substrate specificity, covering aryl ketones, aliphatic ketones and ketoesters. Furthermore, a variety of ketone substrates were asymmetrically reduced by the purified enzyme with an additionally NADPH regeneration system. The reduction system exhibited excellent enantioselectivity (~ 99% ee) in the reduction of all the aromatic ketones and ketoesters, except for 2-bromoacetophenone (93.5% ee). Semi-preparative reduction of six ketones was achieved with high enantioselectivity (〉99% ee) and isolation yields (〉80%) within 12 h. This study provides a useful guidance for further application of this enzyme in the asymmetric synthesis of chiral alcohol enantiomers.
基金supported by the National Key R&D Program of China(No.2021YFC2102000)the Strategic Priority Research Program of the Chinese Academy of Sciences,and Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(No.TSBICIPKJGG-009).
文摘(S)-1-(30-Bromo-20-methoxyphenyl)ethanol((S)-1b)is the key precursor for the synthesis of Lusutrombopag.The bioreduction of 1-(30-bromo-20-methoxyphenyl)ethanone(1a)offers an attractive method to access this important compound.Through screening the available carbonyl reductases,we obtained a carbonyl reductase from Novosphingobium aromaticivorans(CBR),which could completely convert 100 g/L of 1a to(S)-1b.Furthermore,a carbonyl reductase from Novosphingobium sp.Leaf2(NoCR)was identified to completely convert 200 g/L of 1a to(S)-1b with excellent enantioselectivity(>99%ee)and 77%isolated yield using FDH/formate system for NADH regeneration.The K_(m) and k_(cat) of recombinant NoCR towards 1a were 0.66 mmol/L and 7.5 s-1,and the catalytic efficiency k_(cat)/K_(m) was 11.3 mmol/s.L.Meanwhile,NoCR showed high catalytic activity and stereoselectivity towards acetophenone derivatives with halogen or methoxy substitution on the benzene ring,indicating that NoCR is a valuable biocatalyst with potential practical applications.