Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of...Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.展开更多
Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SM...Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.展开更多
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys...Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.展开更多
Feature modeling is the key to the realization of CAD/CAPP/CAM and the information integration of concurrent engineering. This paper describes the method for the advanced development of the parametric modeling system ...Feature modeling is the key to the realization of CAD/CAPP/CAM and the information integration of concurrent engineering. This paper describes the method for the advanced development of the parametric modeling system based on features by using I DEAS 5 system. It elaborates the modeling technique based on the features and generates the product information models based on the features providing abundant information for the process of the ensuing applications. The development of the feature modeling system on the commercial CAD software platform can take a great advantage of the solid modeling resources of the existing software, save the input of funds and shorten the development cycles of the new systems.展开更多
It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory...It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory systems, which may improve the effects of mechanical signal analysis and enrich the methods of mechanical faults features extraction. However the existing methods are all based on explicit senses of mathematics or physics, and have some shortages on distinguishing different faults, stability, and suppressing the disturbance noise, etc. For the purpose of improving the performances of the work of feature extraction, an auditory model, early auditory(EA) model, is introduced for the first time. This auditory model transforms time domain signal into auditory spectrum via bandpass filtering, nonlinear compressing, and lateral inhibiting by simulating the principle of the human auditory system. The EA model is developed with the Gammatone filterbank as the basilar membrane. According to the characteristics of vibration signals, a method is proposed for determining the parameter of inner hair cells model of EA model. The performance of EA model is evaluated through experiments on four rotor faults, including misalignment, rotor-to-stator rubbing, oil film whirl, and pedestal looseness. The results show that the auditory spectrum, output of EA model, can effectively distinguish different faults with satisfactory stability and has the ability to suppress the disturbance noise. Then, it is feasible to apply auditory model, as a new method, to the feature extraction for mechanical faults diagnosis with effect.展开更多
This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the charact...This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the characteristics of its each module are introduced in detail. ZD--MCADII’s product data is managed by an object--oriented database management system OSCAR, and the product model is built according to the standard STEP. The product design is established on a unified product model, and all the product data are globally associated in ZD--MCADII. ZD--MCADII provides various design features to facilitate the product design, and supports the integrity of CAD, CAPP and CAM.展开更多
Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area...Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area is important for breeding area planning,production value estimation,ecological survey,and storm surge prevention.However,as the aquaculture area expands,the seawater background becomes increasingly complex and spectral characteristics differ dramatically,making it difficult to determine the aquaculture area.In this study,we used a high-resolution remote-sensing satellite GF-2 image to introduce a deep-learning Richer Convolutional Features(RCF)network model to extract the aquaculture area.Then we used the density of aquaculture as an assessment index to assess the vulnerability of aquaculture areas in Sanduao.The results demonstrate that this method does not require land and water separation of the area in advance,and good extraction can be achieved in the areas with more sediment and waves,with an extraction accuracy>93%,which is suitable for large-scale aquaculture area extraction.Vulnerability assessment results indicate that the density of aquaculture in the eastern part of Sanduao is considerably high,reaching a higher vulnerability level than other parts.展开更多
Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognitio...Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognition method is proposed in this paper. Because of the better noise suppression ability of the GAR model and the powerful pattern classification capacity of the MLP neural network classifier, the new method can significantly improve the recognition performance in lower SNR with better robustness. To assess the performance of the new method, computer simulations are also performed.展开更多
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr...In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles.展开更多
To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage ...To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage and mesoscopic information for coal under compression was then analysed. The shape and distribution of damage were comprehensively considered in a defined damage variable, which was based on the texture characteristic. An elastic-brittle damage model based on the mesostructure information of coal was established. As a result, the damage model can appropriately and reliably replicate the processes of initiation, expansion, cut-through and eventual destruction of microscopic damage to coal under compression. After comparison, it was proved that the predicted overall stress-strain response of the model was comparable to the experimental result.展开更多
In recent years,convolutional neural networks(CNNs)have been applied successfully in many fields.However,these deep neural models are still considered as“black box”for most tasks.One of the fundamental issues underl...In recent years,convolutional neural networks(CNNs)have been applied successfully in many fields.However,these deep neural models are still considered as“black box”for most tasks.One of the fundamental issues underlying this problem is understanding which features are most influential in image recognition tasks and how CNNs process these features.It is widely believed that CNN models combine low‐level features to form complex shapes until the object can be readily classified,however,several recent studies have argued that texture features are more important than other features.In this paper,we assume that the importance of certain features varies depending on specific tasks,that is,specific tasks exhibit feature bias.We designed two classification tasks based on human intuition to train deep neural models to identify the anticipated biases.We designed experiments comprising many tasks to test these biases in the Res Net and Dense Net models.From the results,we conclude that(1)the combined effect of certain features is typically far more influential than any single feature;(2)in different tasks,neural models can perform different biases,that is,we can design a specific task to make a neural model biased towards a specific anticipated feature.展开更多
Cleats are the dominant micro-fracture network controlling the macro-mechanical behavior of coal.Improved understanding of the spatial characteristics of cleat networks is therefore important to the coal mining indust...Cleats are the dominant micro-fracture network controlling the macro-mechanical behavior of coal.Improved understanding of the spatial characteristics of cleat networks is therefore important to the coal mining industry.Discrete fracture networks(DFNs)are increasingly used in engineering analyses to spatially model fractures at various scales.The reliability of coal DFNs largely depends on the confidence in the input cleat statistics.Estimates of these parameters can be made from image-based three-dimensional(3D)characterization of coal cleats using X-ray micro-computed tomography(m CT).One key step in this process,after cleat extraction,is the separation of individual cleats,without which the cleats are a connected network and statistics for different cleat sets cannot be measured.In this paper,a feature extraction-based image processing method is introduced to identify and separate distinct cleat groups from 3D X-ray m CT images.Kernels(filters)representing explicit cleat features of coal are built and cleat separation is successfully achieved by convolutional operations on 3D coal images.The new method is applied to a coal specimen with 80 mm in diameter and 100 mm in length acquired from an Anglo American Steelmaking Coal mine in the Bowen Basin,Queensland,Australia.It is demonstrated that the new method produces reliable cleat separation capable of defining individual cleats and preserving 3D topology after separation.Bedding-parallel fractures are also identified and separated,which has his-torically been challenging to delineate and rarely reported.A variety of cleat/fracture statistics is measured which not only can quantitatively characterize the cleat/fracture system but also can be used for DFN modeling.Finally,variability and heterogeneity with respect to the core axis are investigated.Significant heterogeneity is observed and suggests that the representative elementary volume(REV)of the cleat groups for engineering purposes may be a complex problem requiring careful consideration.展开更多
Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of mu...Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.展开更多
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv...With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.展开更多
A novel adaptive subspace ensemble slow feature regression model was developed for soft sensing application.Compared to traditional single models and random subspace models,the proposed method is improved in three asp...A novel adaptive subspace ensemble slow feature regression model was developed for soft sensing application.Compared to traditional single models and random subspace models,the proposed method is improved in three aspects.Firstly,sub-datasets are constructed through slow feature directions and variables in each subdatasets are selected according to the output related importance index.Then,an adaptive slow feature regression is presented for sub-models.Finally,a Bayesian inference strategy based on a slow feature analysis process that monitors statistics is developed for probabilistic combination.Two industrial examples were used to evaluate the proposed method.展开更多
Tyre pressure monitoring system(TPMS)is compulsory in most countries like the United States and European Union.The existing systems depend on pressure sensors strapped on the tyre or on wheel speed sensor data.A diffe...Tyre pressure monitoring system(TPMS)is compulsory in most countries like the United States and European Union.The existing systems depend on pressure sensors strapped on the tyre or on wheel speed sensor data.A difference in wheel speed would trigger an alarm based on the algorithm implemented.In this paper,machine learning approach is proposed as a new method to monitor tyre pressure by extracting the vertical vibrations from a wheel hub of a moving vehicle using an accelerometer.The obtained signals will be used to compute through statistical features and histogram features for the feature extraction process.The LMT(Logistic Model Tree)was used as the classifier and attained a classification accuracy of 92.5%with 10-fold cross validation for statistical features and 90.5% with 10-fold cross validation for histogram features.The proposed model can be used for monitoring the automobile tyre pressure successfully.展开更多
Due to global financial crisis,risk management has received significant attention to avoid loss and maximize profit in any business.Since the financial crisis prediction(FCP)process is mainly based on data driven deci...Due to global financial crisis,risk management has received significant attention to avoid loss and maximize profit in any business.Since the financial crisis prediction(FCP)process is mainly based on data driven decision making and intelligent models,artificial intelligence(AI)and machine learning(ML)models are widely utilized.This article introduces an intelligent feature selection with deep learning based financial risk assessment model(IFSDL-FRA).The proposed IFSDL-FRA technique aims to determine the financial crisis of a company or enterprise.In addition,the IFSDL-FRA technique involves the design of new water strider optimization algorithm based feature selection(WSOA-FS)manner to an optimum selection of feature subsets.Moreover,Deep Random Vector Functional Link network(DRVFLN)classification technique was applied to properly allot the class labels to the financial data.Furthermore,improved fruit fly optimization algorithm(IFFOA)based hyperparameter tuning process is carried out to optimally tune the hyperparameters of the DRVFLN model.For enhancing the better performance of the IFSDL-FRA technique,an extensive set of simulations are implemented on benchmark financial datasets and the obtained outcomes determine the betterment of IFSDL-FRA technique on the recent state of art approaches.展开更多
A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tes...A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future.展开更多
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ...Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.展开更多
基金supported in part by the National Natural Science Foundation of China(82072019)the Shenzhen Basic Research Program(JCYJ20210324130209023)+5 种基金the Shenzhen-Hong Kong-Macao S&T Program(Category C)(SGDX20201103095002019)the Mainland-Hong Kong Joint Funding Scheme(MHKJFS)(MHP/005/20),the Project of Strategic Importance Fund(P0035421)the Projects of RISA(P0043001)from the Hong Kong Polytechnic University,the Natural Science Foundation of Jiangsu Province(BK20201441)the Provincial and Ministry Co-constructed Project of Henan Province Medical Science and Technology Research(SBGJ202103038,SBGJ202102056)the Henan Province Key R&D and Promotion Project(Science and Technology Research)(222102310015)the Natural Science Foundation of Henan Province(222300420575),and the Henan Province Science and Technology Research(222102310322).
文摘Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.
基金supported by the National Natural Science Foundation of China(No.U2142206).
文摘Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.
基金Supported by the Centre for Digital Entertainment at Bournemouth University by the UK Engineering and Physical Sciences Research Council(EPSRC)EP/L016540/1 and Humain Ltd.
文摘Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.
文摘Feature modeling is the key to the realization of CAD/CAPP/CAM and the information integration of concurrent engineering. This paper describes the method for the advanced development of the parametric modeling system based on features by using I DEAS 5 system. It elaborates the modeling technique based on the features and generates the product information models based on the features providing abundant information for the process of the ensuing applications. The development of the feature modeling system on the commercial CAD software platform can take a great advantage of the solid modeling resources of the existing software, save the input of funds and shorten the development cycles of the new systems.
基金supported by National Natural Science Foundation of China (Grant No. 50805021)
文摘It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory systems, which may improve the effects of mechanical signal analysis and enrich the methods of mechanical faults features extraction. However the existing methods are all based on explicit senses of mathematics or physics, and have some shortages on distinguishing different faults, stability, and suppressing the disturbance noise, etc. For the purpose of improving the performances of the work of feature extraction, an auditory model, early auditory(EA) model, is introduced for the first time. This auditory model transforms time domain signal into auditory spectrum via bandpass filtering, nonlinear compressing, and lateral inhibiting by simulating the principle of the human auditory system. The EA model is developed with the Gammatone filterbank as the basilar membrane. According to the characteristics of vibration signals, a method is proposed for determining the parameter of inner hair cells model of EA model. The performance of EA model is evaluated through experiments on four rotor faults, including misalignment, rotor-to-stator rubbing, oil film whirl, and pedestal looseness. The results show that the auditory spectrum, output of EA model, can effectively distinguish different faults with satisfactory stability and has the ability to suppress the disturbance noise. Then, it is feasible to apply auditory model, as a new method, to the feature extraction for mechanical faults diagnosis with effect.
文摘This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the characteristics of its each module are introduced in detail. ZD--MCADII’s product data is managed by an object--oriented database management system OSCAR, and the product model is built according to the standard STEP. The product design is established on a unified product model, and all the product data are globally associated in ZD--MCADII. ZD--MCADII provides various design features to facilitate the product design, and supports the integrity of CAD, CAPP and CAM.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402003)the National Natural Science Foundation of China(No.41671436)the Innovation Project of LREIS(No.O88RAA01YA)
文摘Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area is important for breeding area planning,production value estimation,ecological survey,and storm surge prevention.However,as the aquaculture area expands,the seawater background becomes increasingly complex and spectral characteristics differ dramatically,making it difficult to determine the aquaculture area.In this study,we used a high-resolution remote-sensing satellite GF-2 image to introduce a deep-learning Richer Convolutional Features(RCF)network model to extract the aquaculture area.Then we used the density of aquaculture as an assessment index to assess the vulnerability of aquaculture areas in Sanduao.The results demonstrate that this method does not require land and water separation of the area in advance,and good extraction can be achieved in the areas with more sediment and waves,with an extraction accuracy>93%,which is suitable for large-scale aquaculture area extraction.Vulnerability assessment results indicate that the density of aquaculture in the eastern part of Sanduao is considerably high,reaching a higher vulnerability level than other parts.
文摘Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognition method is proposed in this paper. Because of the better noise suppression ability of the GAR model and the powerful pattern classification capacity of the MLP neural network classifier, the new method can significantly improve the recognition performance in lower SNR with better robustness. To assess the performance of the new method, computer simulations are also performed.
基金Project(51209167) supported by Youth Project of the National Natural Science Foundation of ChinaProject(2012JM8026) supported by Shaanxi Provincial Natural Science Foundation, China
文摘In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles.
基金funding by the National Natural Science Foundation of China(Nos.51474039 and 51404046)the Project of Shanxi Provincial Federation of Coalbed Methane Research(No.2013012010)the Science Foundation of North University of China(No.XJJ2016033)
文摘To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage and mesoscopic information for coal under compression was then analysed. The shape and distribution of damage were comprehensively considered in a defined damage variable, which was based on the texture characteristic. An elastic-brittle damage model based on the mesostructure information of coal was established. As a result, the damage model can appropriately and reliably replicate the processes of initiation, expansion, cut-through and eventual destruction of microscopic damage to coal under compression. After comparison, it was proved that the predicted overall stress-strain response of the model was comparable to the experimental result.
基金National Natural Science Foundation of China,Grant/Award Number:61936001Natural Science Foundation of Chongqing,Grant/Award Number:cstc2019jcyj-msxmX0380China Postdoctoral Science Foundation,Grant/Award Number:2021M700562。
文摘In recent years,convolutional neural networks(CNNs)have been applied successfully in many fields.However,these deep neural models are still considered as“black box”for most tasks.One of the fundamental issues underlying this problem is understanding which features are most influential in image recognition tasks and how CNNs process these features.It is widely believed that CNN models combine low‐level features to form complex shapes until the object can be readily classified,however,several recent studies have argued that texture features are more important than other features.In this paper,we assume that the importance of certain features varies depending on specific tasks,that is,specific tasks exhibit feature bias.We designed two classification tasks based on human intuition to train deep neural models to identify the anticipated biases.We designed experiments comprising many tasks to test these biases in the Res Net and Dense Net models.From the results,we conclude that(1)the combined effect of certain features is typically far more influential than any single feature;(2)in different tasks,neural models can perform different biases,that is,we can design a specific task to make a neural model biased towards a specific anticipated feature.
文摘Cleats are the dominant micro-fracture network controlling the macro-mechanical behavior of coal.Improved understanding of the spatial characteristics of cleat networks is therefore important to the coal mining industry.Discrete fracture networks(DFNs)are increasingly used in engineering analyses to spatially model fractures at various scales.The reliability of coal DFNs largely depends on the confidence in the input cleat statistics.Estimates of these parameters can be made from image-based three-dimensional(3D)characterization of coal cleats using X-ray micro-computed tomography(m CT).One key step in this process,after cleat extraction,is the separation of individual cleats,without which the cleats are a connected network and statistics for different cleat sets cannot be measured.In this paper,a feature extraction-based image processing method is introduced to identify and separate distinct cleat groups from 3D X-ray m CT images.Kernels(filters)representing explicit cleat features of coal are built and cleat separation is successfully achieved by convolutional operations on 3D coal images.The new method is applied to a coal specimen with 80 mm in diameter and 100 mm in length acquired from an Anglo American Steelmaking Coal mine in the Bowen Basin,Queensland,Australia.It is demonstrated that the new method produces reliable cleat separation capable of defining individual cleats and preserving 3D topology after separation.Bedding-parallel fractures are also identified and separated,which has his-torically been challenging to delineate and rarely reported.A variety of cleat/fracture statistics is measured which not only can quantitatively characterize the cleat/fracture system but also can be used for DFN modeling.Finally,variability and heterogeneity with respect to the core axis are investigated.Significant heterogeneity is observed and suggests that the representative elementary volume(REV)of the cleat groups for engineering purposes may be a complex problem requiring careful consideration.
文摘Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.
基金supported by the National Natural Science Foundation of China(62033008,61873143)。
文摘With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.
基金the support from the National Natural Science Foundation of China(No.21676086).
文摘A novel adaptive subspace ensemble slow feature regression model was developed for soft sensing application.Compared to traditional single models and random subspace models,the proposed method is improved in three aspects.Firstly,sub-datasets are constructed through slow feature directions and variables in each subdatasets are selected according to the output related importance index.Then,an adaptive slow feature regression is presented for sub-models.Finally,a Bayesian inference strategy based on a slow feature analysis process that monitors statistics is developed for probabilistic combination.Two industrial examples were used to evaluate the proposed method.
文摘Tyre pressure monitoring system(TPMS)is compulsory in most countries like the United States and European Union.The existing systems depend on pressure sensors strapped on the tyre or on wheel speed sensor data.A difference in wheel speed would trigger an alarm based on the algorithm implemented.In this paper,machine learning approach is proposed as a new method to monitor tyre pressure by extracting the vertical vibrations from a wheel hub of a moving vehicle using an accelerometer.The obtained signals will be used to compute through statistical features and histogram features for the feature extraction process.The LMT(Logistic Model Tree)was used as the classifier and attained a classification accuracy of 92.5%with 10-fold cross validation for statistical features and 90.5% with 10-fold cross validation for histogram features.The proposed model can be used for monitoring the automobile tyre pressure successfully.
文摘Due to global financial crisis,risk management has received significant attention to avoid loss and maximize profit in any business.Since the financial crisis prediction(FCP)process is mainly based on data driven decision making and intelligent models,artificial intelligence(AI)and machine learning(ML)models are widely utilized.This article introduces an intelligent feature selection with deep learning based financial risk assessment model(IFSDL-FRA).The proposed IFSDL-FRA technique aims to determine the financial crisis of a company or enterprise.In addition,the IFSDL-FRA technique involves the design of new water strider optimization algorithm based feature selection(WSOA-FS)manner to an optimum selection of feature subsets.Moreover,Deep Random Vector Functional Link network(DRVFLN)classification technique was applied to properly allot the class labels to the financial data.Furthermore,improved fruit fly optimization algorithm(IFFOA)based hyperparameter tuning process is carried out to optimally tune the hyperparameters of the DRVFLN model.For enhancing the better performance of the IFSDL-FRA technique,an extensive set of simulations are implemented on benchmark financial datasets and the obtained outcomes determine the betterment of IFSDL-FRA technique on the recent state of art approaches.
基金This project is supported by National Natural Science Foundation of China(No.50075079).
文摘A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future.
基金Supported partially by the Post Doctoral Natural Science Foundation of China(2013M532118,2015T81082)the National Natural Science Foundation of China(61573364,61273177,61503066)+2 种基金the State Key Laboratory of Synthetical Automation for Process Industriesthe National High Technology Research and Development Program of China(2015AA043802)the Scientific Research Fund of Liaoning Provincial Education Department(L2013272)
文摘Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.