Several Au deposits in Guizhou Province,southwest China,described as being similar to the highly productive Carlin-type gold deposits in northern Nevada.USA,were examined to identify similarities and differences betwe...Several Au deposits in Guizhou Province,southwest China,described as being similar to the highly productive Carlin-type gold deposits in northern Nevada.USA,were examined to identify similarities and differences between the two districts.Samples were collected along transects from lowto high-grade rock,where possible,and fram stockpiles at the Shuiyindong,Zimudang,Taipingdong,Yata and Jinfeng(formerly Lannigou)deposits.Methods used to examine ore and alteration minerals included hand-sample description:reflectance spectroscopy using an ASD Terraspec spectrometer;analyses of hand samples by carbonate staining with Alizaren red and potassium ferricyanide;transmitted and reflected light petrography;chemical analyses,mineral identification,and imaging using a JEOL.JSM-5610 scanning electron microscope:and quantitative chemical analyses using a JEOL JXA-8900 electron probe microanalyzer.Geochemical analyses of hand samples for 52 elements were done by ALS Chemex.Results indicate both similarities and differences between the two districts.Both districts have similar geologic histories.and deposits at both locations appear to have formed as a result of similar tectonic events.though the district in southwest China lacks evidence of eoeval felsic igneous activity;however,the ore-stage minerals and the fluids that produced the minerals and deposits have some significant differences.The Nevada deposits were dominated by fluid-rock reaction in which host rock Fe was sulfidized to form Au-bearing pyrite.Although ore fluids sulfidized host rock Fe in the Cuizhou deposits.the timing of Fe metasomatism is unknown,so whether the deposits formed in response to sulfidation or pyritization is unclear.Fluid-rock reaction between an acidic,aqueous fluid and highly reactive calcareous rocks in Nevada caused extensive decarbonatization of host rocks,jasperoid replacemerit of carbonate minerals,and alteration of silty rock components to illite and kaolinite.In Guizhou,CO2-bearing ore fluids with temperatures and pressures approaching 100℃ and 500 bars greater than temperatures and pressures detemained for ore fluids in the Nevada deposits,deposited Aubearing pyrite.In examined Guizhou deposits these fluids carbonatized host rocks and farmed both replacement and open-space-filling ore.The fluids,which may have been immiscible,were sufficiently overpressured to fracture wall rocks and to create significant open space filled by vein quartz.While deposit architecture,tectonic setting,and host rocks in Guizhou are quite similar to northern Nevada,ore and alteration minerals suggest that ore-forming processes in examined Guizhou deposits have important similarities to processes associated with formation of orogenic Au systems.The Guizhou deposits display characteristics of both Carlin-type and orogenic systems,perhaps indicating formation at conditions somewhat intermediate to conditions for Carlin-type deposits and orogenic systems.展开更多
The Shuiyindong gold deposit is one of the most famous and largest Carlin-type gold deposits in China and is located in southwest Guizhou, in the eastern part of the Huijiabao anticline. The Shuiyindong's gold min...The Shuiyindong gold deposit is one of the most famous and largest Carlin-type gold deposits in China and is located in southwest Guizhou, in the eastern part of the Huijiabao anticline. The Shuiyindong's gold mineralization occurred in bioclastic limestone of the Permian Longtan Formation. Sulfur, carbon, hydrogen, oxygen, and lead isotopic compositions are reported in this paper. The properties and sources of ore-forming fluid have been discussed and a metallogenic model for the Shuiyindong gold deposit has been proposed. The d34 S values of stibnite, realgar, orpiment, pyrite from orebodies, and pyrite from quartz veins are similar to or slightly higher than the d34 S values of mantle sulfur. It is suggested that the sulfur of hydrothermal sulfides was likely of magmatic origin with minor heavy sulfur contributed from the country rocks. The measured d D values and calculated d18OH2 O values of inclusion fluid in quartz plotted within or below a magmatic hydrothermal fluid field far from the meteoric water line. This indicates that the ore-forming fluid for the main-stage gold mineralization could have been derived mainly from a magmatic source and mixed with a small amount of meteoric water. The carbon and oxygen isotopic compositions of calcites in the d18 O vs. d13 C diagram suggest that the CO2 in ore-forming fluid was derived from dissolution of bioclastic limestone and oxidation of sedimentary organic carbon in limestone. However, the d13 C values of ore-related calcites, which contain intergrown realgar and/or orpiment, are similar to those of mantle carbon. Although no igneous intrusive rock has been observed in the vicinity of the gold deposits, the possibility of mantle fluid integrated into the ore-forming fluid cannot be eliminated based on the d13 C values of ore-related calcites. The lead isotopes of sulfides are distributed near the growth curves of upper crust and orogenic belt in the plumbotectonic diagram. Their calculated Dc and Db values plotted within the magmatism field of crust-mantle subduction zone in the Dc- Db diagram. This suggests that the lead of sulfides has an intimate connection with magmatism. Our S, H, O, C, and Pb isotopic studies for the Shuiyindong Carlin-type gold deposit in Guizhou manifest a concordant possibility that the ore-forming fluid was mainly derived from magmatic fluid with minor contribution from the surrounding strata. With the integration of comprehensive geology and isotopic geochemistry, we have proposed a magmatic hydrothermal model for the origin of the Shuiyindong gold deposit.展开更多
Gold Headquarter of the CAPF has discovered the Yangshan super large-scale gold deposit in Gansu Province, which is a great breakthrough of gold exploration and prospecting in Western Qinling Mountains of China. The g...Gold Headquarter of the CAPF has discovered the Yangshan super large-scale gold deposit in Gansu Province, which is a great breakthrough of gold exploration and prospecting in Western Qinling Mountains of China. The gold resources of this deposit achieved 308 tons with increasing potentials. Preliminary geological investigations indicate that the Yangshan gold deposit is located in the intra-continental collision orogenic belt; and the deposit was formed during the continent-continent collision orogenic processes. The geological characteristics of the deposit are similar to that of the typical Carlin-type gold deposits, while differences still exist. The ore-forming background is notably different from the Carlin gold deposit province in the United States; and the ore-forming fluids are similar with that of the orogenic-type gold deposit. Accordingly, the Yangshan gold deposit is a transitional type between the Carlin-type and the orogenic type gold deposits. At present, the Yangshan gold deposit is the largest Carlin and Carlin-like type gold deposit that is ever discovered in China. Researches on metallogeny, metallogenic model and ore-enrichment regularities of the Yangshan gold deposit are crucial to meet the pressing needs of the current geological investigation and ore exploration of the deposit.展开更多
The fault-controlled Nibao Carlin-type gold deposit,together with the strata-bound Shuiyindong deposit,comprise a significant amount of the disseminated gold deposits in southwestern Guizhou Province,China.Five main t...The fault-controlled Nibao Carlin-type gold deposit,together with the strata-bound Shuiyindong deposit,comprise a significant amount of the disseminated gold deposits in southwestern Guizhou Province,China.Five main types and two sub-types of pyrite at the Nibao deposit(Py1a/Py1b,Py2,Py3,Py4,Py5)were distinguished based on detailed mineralogical work.Py1,Py2and Py3 are Au-poor,whereas Py4 and Py5 are Au-rich,corresponding to a sedimentary and hydrothermal origin,respectively.Through systematic in situ analyses of NanoSIMS sulfur isotopes,the framboid pyrite Py1a with negative δ^34S values(-53.3 to-14.9%)from the Nibao deposit were found to originate from bacterial sulfate reduction(BSR)processes in an open and sulfate-sufficient condition while the superheavy pyrite Py1b(73.7–114.8%)is probably due to the potential influence of closed-system Rayleigh fractionation or the lack of preservation of deepsea sediments.Data of Py2 and Py3 plot within the area of S isotope compositions from biogenic and abiogenic sulfate reduction.In view of few coeval magmatic rocks in the mining district,the near zero δ^34S values of the Au-rich pyrites(Py4 and Py5)may discount the potential involvement of magmatic but metamorphic or sedimentary origin.LA-ICP-MS and TEM work show that Au in ore-related pyrite is present as both nanoparticles and structurally bound.LA-ICP-MS analyses show that the Au-rich pyrite also contains higher As,Cu,Sb,Tl and S than other types of pyrite,which inferred a distal manifestation of deep hydrothermal mineralization systems.展开更多
Mercury pollution resulting from artisanal gold mining is a serious environmental problem in many developing countries. In this study, we analyzed heavy metal(loid) contamination in mine wastes from a Carlin-type gold...Mercury pollution resulting from artisanal gold mining is a serious environmental problem in many developing countries. In this study, we analyzed heavy metal(loid) contamination in mine wastes from a Carlin-type gold mine in southwestern Guizhou, China. Highly elevated levels of As, Hg, Tl, Sb, and Cd—up to 5844, 28,29, 581 and 3.0 mg/kg, respectively—were observed in the mine wastes, but no significant accumulation of Cr, Ni, Cu,Zn, and Pb was found. The smelting process of gold ores had significant impacts on the enrichment of As, Tl, and Hg in the mine wastes. Due to the significant metal(loid)pollution in this gold mine, the ecological risks are classified as ‘‘very high.'' Hg and As are the major pollutants with a relative contribution of 55.9 % and 24.2 % to the risk index, respectively. Phytoremediation could be used to reduce heavy metal contamination and recycle the gold simultaneously. Hg–As–Tl pollution should be considered in gold extraction at Carlin-type gold mines.展开更多
The Shuiyindong deposit is one of the largest (more than 100 tonnes of Au) and highest grade (more than 7×10-6-10×10-6), strata-bound Carlintype gold deposits in southwestern Guizhou Province, China. The dep...The Shuiyindong deposit is one of the largest (more than 100 tonnes of Au) and highest grade (more than 7×10-6-10×10-6), strata-bound Carlintype gold deposits in southwestern Guizhou Province, China. The deposit is controlled by both structure and favorable lithology. It is situated near the axis of the striking Huijiabao anticline and is hosted in bioclastic limestone of the Permian Longtan Formation. Gold mineralization occurred under low temperature with Th of 220℃± and is closely associated with decarbonation, silicification, sulfidation and dolomitization. The deposit has a characteristic elemental assemblage of Au-As-Hg-Tl. Studies of geochemistry and isotope compositions indicated that the ore-bearing materials and fluids of the gold deposit mainly originated from a plutonic source, and possess a mixing feature with the strata matter during transportation from mantle to crust. Fluid inclusions in vein quartz from the gold deposit are rich in volatile flux, indicating that metallogenic fluid is an overpres-sured one. The activity and geothermal state of the Earth's crust in the long period of time are favorable for the formation of overpressured fluids in a large area, and extensive structures would drive the fluids into ore-forming sys-tem and make gold deposits formed. The complexity of structural movement in the upper crust of southwestern Guizhou Province resulted in complicated gold mineralization. Through metallogenic prognosis and exploration, the proven reserves of the deposit increased by tens of tonnes of Au and the deposit has become a super-large strata-bound Carlin-type gold deposit.展开更多
The Jinlongshan gold ore belt in southern Shaanxi Province contains a number of Carlin-type gold deposits in the Qinling collisional orogenic belt. Their fluid inclusions are of the Na-Cl- type. From the main metallog...The Jinlongshan gold ore belt in southern Shaanxi Province contains a number of Carlin-type gold deposits in the Qinling collisional orogenic belt. Their fluid inclusions are of the Na-Cl- type. From the main metallogenic stage to later stages, the total quantity of anions and cations, temperature and deoxidation parameter (R) for fluid inclusions all gradually decreased, suggesting the gradual intensification of fluid oxidation, the reduction of metallogenic depth and the input of meteoric water and organic components. The deposits were formed during crustal uplifting and hence had similar tectonic settings to orogenic gold deposits. The CO-2 contents and CO-2/H-2O values of the ore fluid increased from early to late stages, and the wall-rock alteration is represented by decarbonation, which is inconsistent with the characteristics of orogenic gold deposits. It is also discovered that Na, K, SO{2-}-4, Cl- and the total amounts of anions and cations in the inclusions in quartz are higher than those in the coexisting calcite. The H, O and C isotope ratios indicate that the ore fluid was sourced from meteoric water and metamorphic devolatilisation of the sedimentary rocks that host the ores. The high background {δ{}{18}O} and {δ{}{13}C} values of wall rocks resulted in high {δ{}{18}O} and {δ{}{13}C} values of ore fluid and also high {δ{}{18}O} and {δ{}{13}C} values of hydrothermal minerals such as quartz and carbonate. The carbon in ore fluid stemmed largely from the hosting strata. The {δ{}{18}O} and {δ{}{13}C} values of Fe-calcite and the δD values of fluid inclusions are lower than those of calcite and quartz. In terms of the theory of coordination chemistry, all these differences can be ascribed to water-rock interaction in the same fluid system, instead, to the multi-source of ore fluid.展开更多
A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province.The Long-tan Formation contains abundant basalt,tuff and siliceous rocks.All rocks of the Longtan Formati...A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province.The Long-tan Formation contains abundant basalt,tuff and siliceous rocks.All rocks of the Longtan Formation are enriched in gold,which were deposited in a limited platform environment in the transition zone from marine to continental.The process of sedimentation was accompanied by the eruption of Emeishan basalt and hydrothermal deposition controlled by co-sedimentary submarine deep faults in the west,which led to the formation of a peculiar gold-bearing formation with coal series strata.This formation controlled the occurrence of the Carlin-type gold deposits in southwestern Guizhou Province.In response to the remobilization of the Emei mantle plume during the Yanshanian period,As,Au and other ore-forming materials were continuously extracted by deeply circulating waters from the Emeishan basalt and coal seams,thereafter forming ore-forming hydrothermal solutions.When these elements were transported in the coal seams,large amounts of As,Au and other elements were enriched in pyrite within the coal seams,thus forming high-As coal and Carlin-type gold deposits in the Longtan Formation coal series strata.展开更多
Geochemical studies of the Paiting and Miaolong Carlin-type gold deposits in the Sandu-Danzhai metal-logenic zone,Guizhou Province,have shown that the mineralized-altered rocks show LREE-enrichment patterns,generally ...Geochemical studies of the Paiting and Miaolong Carlin-type gold deposits in the Sandu-Danzhai metal-logenic zone,Guizhou Province,have shown that the mineralized-altered rocks show LREE-enrichment patterns,generally displaying negative Eu anomalies(δEu=0.51?0.97) and unobvious negative Ce anomalies(δCe=0.86?0.99).Calcite and fluorite in relation with metallogenesis show MREE-enrichment patterns,generally displaying rather weak negative Eu anomalies(δEu=0.74?0.93) and weak negative Ce(δCe=0.70?0.98) anomalies.The δ13CPDB values of carbon in calcite are-1.61‰?-5.82‰,the δ18OSMOW values of oxygen are 13.97‰?19.24‰,and the δ34SCDT values of sulfur in stibnite are 17.72‰?21.68‰.In regard to δD and δ18O,ore-forming fluids pos-sess the characteristics of metamorphic water.The process of metallogenesis of the Carlin-type gold deposits is con-trolled by the Yanshanian tectonic activities.The Yanshanian movement promoted the migration and mobilization of metamorphic fluids in the extensively developed medium-to high-grade metamorphic rocks in this region,carrying primarily enriched gold and associated elements such as Hg,As,and Sb in the Sinian metamorphosed black shales and Lower Cambrian black shales.The ore-forming fluids found their way into a suitable metallogenic environment along the fault zone,followed by gold precipitation to form gold deposits.展开更多
The newly discovered Baogudi gold district is located in the southwestern Guizhou Province,China,where there are numerous Carlin-type gold deposits.To better understand the geological and geochemical characteristics o...The newly discovered Baogudi gold district is located in the southwestern Guizhou Province,China,where there are numerous Carlin-type gold deposits.To better understand the geological and geochemical characteristics of the Baogudi gold district,we carried out petrographic observations,elemental analyses,and fluid inclusion and isotopic composition studies.We also compared the results with those of typical Carlin-type gold deposits in southwestern Guizhou.Three mineralization stages,namely,the sedimentation diagenesis,hydrothermal(main-ore and late-ore substages),and supergene stages,were identified based on field and petrographic observations.The main-ore and late-ore stages correspond to Au and Sb mineralization,respectively,which are similar to typical Carlin-type mineralization.The mass transfer associated with alteration and mineralization shows that a significant amount of Au,As,Sb,Hg,Tl,Mo,and S were added to mineralized rocks during the main-ore stage.Remarkably,arsenic,Sb,and S were added to the mineralized rocks during the late-ore stage.Element migration indicates that the sulfidation process was responsible for ore formation.Four types of fluid inclusions were identified in ore-related quartz and fluorite.The main-ore stage fluids are characterized by an H2O–NaCl–CO2–CH4±N2system,with medium to low temperatures(180–260℃)and low salinity(0–9.08%NaCl equivalent).The late-ore stage fluids featured H2O–NaCl±CO2±CH4,with low temperature(120–200℃)and low salinity(0–7.48%Na Cl equivalent).The temperature,salinity,and CO2and CH4concentrations of ore-forming fluids decreased from the main-ore stage to the late-ore stage.The calculated δ^13C,d D,and δ^18O values of the ore-forming fluids range from-14.3 to-7.0%,-76 to-55.7%,and 4.5–15.0%,respectively.Late-ore-stage stibnite had δ^34S values ranging from-0.6 to 1.9%.These stable isotopic compositions indicate that the ore-forming fluids originated mainly from deep magmatic hydrothermal fluids,with minor contributions from strata.Collectively,the Baogudi metallogenic district has geological and geochemical characteristics that are typical of Carlin-type gold deposits in southwest Guizhou.It is likely that the Baogudi gold district,together with other Carlin-type gold deposits in southwestern Guizhou,was formed in response to a single widespread metallogenic event.展开更多
Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Gui...Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.展开更多
Fluid inclusions in quartz from the Lannigou and Yata Carlin\|type gold deposits in southwestern Guizhou were analyzed by inductively coupled plasma\|mass spectrometry for their trace elements (Co, Ni, Cu, Pb, Zn, Pt,...Fluid inclusions in quartz from the Lannigou and Yata Carlin\|type gold deposits in southwestern Guizhou were analyzed by inductively coupled plasma\|mass spectrometry for their trace elements (Co, Ni, Cu, Pb, Zn, Pt, etc.). The results show that quartz fluid inclusions entrapped at different ore\|forming stages contain higher Co, Ni, Cu, Pb and Zn. It has been found for the first time that the ore\|forming fluids responsible for the Carlin\|type gold deposits are rich in Pt. From this it can be concluded that basic volcanic rocks seem to be one of the important sources of ore\|forming materials for the Carlin\|type gold deposits.展开更多
The sediment hosted disseminated gold deposits in the Qinling region are of sedimentation slight metamorphic origin superimposed by hydrothermal reworking at moderate low temperatures and are well comparable with the ...The sediment hosted disseminated gold deposits in the Qinling region are of sedimentation slight metamorphic origin superimposed by hydrothermal reworking at moderate low temperatures and are well comparable with the typical Carlin gold deposits in the United States. In view of the confusing concept concerning the \!sediment hosted" and \!Carlin type" gold deposits, the authors propose that the term \!sediment hosted gold deposit" should be used in a broad sense which encompasses at least the four subtypes, i.e., the Carlin type, the metamorphic fine clastic type, the hydrothermal sedimentary type and the vein type. In other words, the \!Carlin type" should not be used as a synonym for \!sediment hosted" but is recommended as a subtype under the general category of \!sediment hosted gold deposits".展开更多
基金We would also like to acknowledge financial support from Key Project 40930423 from the National Natural Science Foun dation of China.
文摘Several Au deposits in Guizhou Province,southwest China,described as being similar to the highly productive Carlin-type gold deposits in northern Nevada.USA,were examined to identify similarities and differences between the two districts.Samples were collected along transects from lowto high-grade rock,where possible,and fram stockpiles at the Shuiyindong,Zimudang,Taipingdong,Yata and Jinfeng(formerly Lannigou)deposits.Methods used to examine ore and alteration minerals included hand-sample description:reflectance spectroscopy using an ASD Terraspec spectrometer;analyses of hand samples by carbonate staining with Alizaren red and potassium ferricyanide;transmitted and reflected light petrography;chemical analyses,mineral identification,and imaging using a JEOL.JSM-5610 scanning electron microscope:and quantitative chemical analyses using a JEOL JXA-8900 electron probe microanalyzer.Geochemical analyses of hand samples for 52 elements were done by ALS Chemex.Results indicate both similarities and differences between the two districts.Both districts have similar geologic histories.and deposits at both locations appear to have formed as a result of similar tectonic events.though the district in southwest China lacks evidence of eoeval felsic igneous activity;however,the ore-stage minerals and the fluids that produced the minerals and deposits have some significant differences.The Nevada deposits were dominated by fluid-rock reaction in which host rock Fe was sulfidized to form Au-bearing pyrite.Although ore fluids sulfidized host rock Fe in the Cuizhou deposits.the timing of Fe metasomatism is unknown,so whether the deposits formed in response to sulfidation or pyritization is unclear.Fluid-rock reaction between an acidic,aqueous fluid and highly reactive calcareous rocks in Nevada caused extensive decarbonatization of host rocks,jasperoid replacemerit of carbonate minerals,and alteration of silty rock components to illite and kaolinite.In Guizhou,CO2-bearing ore fluids with temperatures and pressures approaching 100℃ and 500 bars greater than temperatures and pressures detemained for ore fluids in the Nevada deposits,deposited Aubearing pyrite.In examined Guizhou deposits these fluids carbonatized host rocks and farmed both replacement and open-space-filling ore.The fluids,which may have been immiscible,were sufficiently overpressured to fracture wall rocks and to create significant open space filled by vein quartz.While deposit architecture,tectonic setting,and host rocks in Guizhou are quite similar to northern Nevada,ore and alteration minerals suggest that ore-forming processes in examined Guizhou deposits have important similarities to processes associated with formation of orogenic Au systems.The Guizhou deposits display characteristics of both Carlin-type and orogenic systems,perhaps indicating formation at conditions somewhat intermediate to conditions for Carlin-type deposits and orogenic systems.
基金supported financially by project 2014CB440905 under the Major State Basic Research Development Program of China (973 Program)the 12th Five-Year Plan Project of State Key Laboratory of Ore-deposit Geochemistry, Chinese Academy of Sciences (SKLODG-ZY125-01)
文摘The Shuiyindong gold deposit is one of the most famous and largest Carlin-type gold deposits in China and is located in southwest Guizhou, in the eastern part of the Huijiabao anticline. The Shuiyindong's gold mineralization occurred in bioclastic limestone of the Permian Longtan Formation. Sulfur, carbon, hydrogen, oxygen, and lead isotopic compositions are reported in this paper. The properties and sources of ore-forming fluid have been discussed and a metallogenic model for the Shuiyindong gold deposit has been proposed. The d34 S values of stibnite, realgar, orpiment, pyrite from orebodies, and pyrite from quartz veins are similar to or slightly higher than the d34 S values of mantle sulfur. It is suggested that the sulfur of hydrothermal sulfides was likely of magmatic origin with minor heavy sulfur contributed from the country rocks. The measured d D values and calculated d18OH2 O values of inclusion fluid in quartz plotted within or below a magmatic hydrothermal fluid field far from the meteoric water line. This indicates that the ore-forming fluid for the main-stage gold mineralization could have been derived mainly from a magmatic source and mixed with a small amount of meteoric water. The carbon and oxygen isotopic compositions of calcites in the d18 O vs. d13 C diagram suggest that the CO2 in ore-forming fluid was derived from dissolution of bioclastic limestone and oxidation of sedimentary organic carbon in limestone. However, the d13 C values of ore-related calcites, which contain intergrown realgar and/or orpiment, are similar to those of mantle carbon. Although no igneous intrusive rock has been observed in the vicinity of the gold deposits, the possibility of mantle fluid integrated into the ore-forming fluid cannot be eliminated based on the d13 C values of ore-related calcites. The lead isotopes of sulfides are distributed near the growth curves of upper crust and orogenic belt in the plumbotectonic diagram. Their calculated Dc and Db values plotted within the magmatism field of crust-mantle subduction zone in the Dc- Db diagram. This suggests that the lead of sulfides has an intimate connection with magmatism. Our S, H, O, C, and Pb isotopic studies for the Shuiyindong Carlin-type gold deposit in Guizhou manifest a concordant possibility that the ore-forming fluid was mainly derived from magmatic fluid with minor contribution from the surrounding strata. With the integration of comprehensive geology and isotopic geochemistry, we have proposed a magmatic hydrothermal model for the origin of the Shuiyindong gold deposit.
文摘Gold Headquarter of the CAPF has discovered the Yangshan super large-scale gold deposit in Gansu Province, which is a great breakthrough of gold exploration and prospecting in Western Qinling Mountains of China. The gold resources of this deposit achieved 308 tons with increasing potentials. Preliminary geological investigations indicate that the Yangshan gold deposit is located in the intra-continental collision orogenic belt; and the deposit was formed during the continent-continent collision orogenic processes. The geological characteristics of the deposit are similar to that of the typical Carlin-type gold deposits, while differences still exist. The ore-forming background is notably different from the Carlin gold deposit province in the United States; and the ore-forming fluids are similar with that of the orogenic-type gold deposit. Accordingly, the Yangshan gold deposit is a transitional type between the Carlin-type and the orogenic type gold deposits. At present, the Yangshan gold deposit is the largest Carlin and Carlin-like type gold deposit that is ever discovered in China. Researches on metallogeny, metallogenic model and ore-enrichment regularities of the Yangshan gold deposit are crucial to meet the pressing needs of the current geological investigation and ore exploration of the deposit.
基金funded by the National 973 Program of China (2014CB440906)
文摘The fault-controlled Nibao Carlin-type gold deposit,together with the strata-bound Shuiyindong deposit,comprise a significant amount of the disseminated gold deposits in southwestern Guizhou Province,China.Five main types and two sub-types of pyrite at the Nibao deposit(Py1a/Py1b,Py2,Py3,Py4,Py5)were distinguished based on detailed mineralogical work.Py1,Py2and Py3 are Au-poor,whereas Py4 and Py5 are Au-rich,corresponding to a sedimentary and hydrothermal origin,respectively.Through systematic in situ analyses of NanoSIMS sulfur isotopes,the framboid pyrite Py1a with negative δ^34S values(-53.3 to-14.9%)from the Nibao deposit were found to originate from bacterial sulfate reduction(BSR)processes in an open and sulfate-sufficient condition while the superheavy pyrite Py1b(73.7–114.8%)is probably due to the potential influence of closed-system Rayleigh fractionation or the lack of preservation of deepsea sediments.Data of Py2 and Py3 plot within the area of S isotope compositions from biogenic and abiogenic sulfate reduction.In view of few coeval magmatic rocks in the mining district,the near zero δ^34S values of the Au-rich pyrites(Py4 and Py5)may discount the potential involvement of magmatic but metamorphic or sedimentary origin.LA-ICP-MS and TEM work show that Au in ore-related pyrite is present as both nanoparticles and structurally bound.LA-ICP-MS analyses show that the Au-rich pyrite also contains higher As,Cu,Sb,Tl and S than other types of pyrite,which inferred a distal manifestation of deep hydrothermal mineralization systems.
基金funded by the West Light Foundation of the Chinese Academy of Sciencesthe Social Development Project of Guizhou Province (2012–3044)+1 种基金the Natural Science Foundation of Guizhou Province (2009–2003)the National Natural Science Foundation of China (21007068 and 41373135)
文摘Mercury pollution resulting from artisanal gold mining is a serious environmental problem in many developing countries. In this study, we analyzed heavy metal(loid) contamination in mine wastes from a Carlin-type gold mine in southwestern Guizhou, China. Highly elevated levels of As, Hg, Tl, Sb, and Cd—up to 5844, 28,29, 581 and 3.0 mg/kg, respectively—were observed in the mine wastes, but no significant accumulation of Cr, Ni, Cu,Zn, and Pb was found. The smelting process of gold ores had significant impacts on the enrichment of As, Tl, and Hg in the mine wastes. Due to the significant metal(loid)pollution in this gold mine, the ecological risks are classified as ‘‘very high.'' Hg and As are the major pollutants with a relative contribution of 55.9 % and 24.2 % to the risk index, respectively. Phytoremediation could be used to reduce heavy metal contamination and recycle the gold simultaneously. Hg–As–Tl pollution should be considered in gold extraction at Carlin-type gold mines.
基金supported jointly by the State Science and Technology Supporting Program (2006BAB01A13)the self-research project funded by the State Key Laboratory of Ore Deposit Geochemistry (Ore Deposit Special Research Project 2008.3-2)Guizhou Provincial Bureau of Geology and Mineral Resource Exploration and Development [Qian Di Kuang Ke (2009) No. 11]
文摘The Shuiyindong deposit is one of the largest (more than 100 tonnes of Au) and highest grade (more than 7×10-6-10×10-6), strata-bound Carlintype gold deposits in southwestern Guizhou Province, China. The deposit is controlled by both structure and favorable lithology. It is situated near the axis of the striking Huijiabao anticline and is hosted in bioclastic limestone of the Permian Longtan Formation. Gold mineralization occurred under low temperature with Th of 220℃± and is closely associated with decarbonation, silicification, sulfidation and dolomitization. The deposit has a characteristic elemental assemblage of Au-As-Hg-Tl. Studies of geochemistry and isotope compositions indicated that the ore-bearing materials and fluids of the gold deposit mainly originated from a plutonic source, and possess a mixing feature with the strata matter during transportation from mantle to crust. Fluid inclusions in vein quartz from the gold deposit are rich in volatile flux, indicating that metallogenic fluid is an overpres-sured one. The activity and geothermal state of the Earth's crust in the long period of time are favorable for the formation of overpressured fluids in a large area, and extensive structures would drive the fluids into ore-forming sys-tem and make gold deposits formed. The complexity of structural movement in the upper crust of southwestern Guizhou Province resulted in complicated gold mineralization. Through metallogenic prognosis and exploration, the proven reserves of the deposit increased by tens of tonnes of Au and the deposit has become a super-large strata-bound Carlin-type gold deposit.
文摘The Jinlongshan gold ore belt in southern Shaanxi Province contains a number of Carlin-type gold deposits in the Qinling collisional orogenic belt. Their fluid inclusions are of the Na-Cl- type. From the main metallogenic stage to later stages, the total quantity of anions and cations, temperature and deoxidation parameter (R) for fluid inclusions all gradually decreased, suggesting the gradual intensification of fluid oxidation, the reduction of metallogenic depth and the input of meteoric water and organic components. The deposits were formed during crustal uplifting and hence had similar tectonic settings to orogenic gold deposits. The CO-2 contents and CO-2/H-2O values of the ore fluid increased from early to late stages, and the wall-rock alteration is represented by decarbonation, which is inconsistent with the characteristics of orogenic gold deposits. It is also discovered that Na, K, SO{2-}-4, Cl- and the total amounts of anions and cations in the inclusions in quartz are higher than those in the coexisting calcite. The H, O and C isotope ratios indicate that the ore fluid was sourced from meteoric water and metamorphic devolatilisation of the sedimentary rocks that host the ores. The high background {δ{}{18}O} and {δ{}{13}C} values of wall rocks resulted in high {δ{}{18}O} and {δ{}{13}C} values of ore fluid and also high {δ{}{18}O} and {δ{}{13}C} values of hydrothermal minerals such as quartz and carbonate. The carbon in ore fluid stemmed largely from the hosting strata. The {δ{}{18}O} and {δ{}{13}C} values of Fe-calcite and the δD values of fluid inclusions are lower than those of calcite and quartz. In terms of the theory of coordination chemistry, all these differences can be ascribed to water-rock interaction in the same fluid system, instead, to the multi-source of ore fluid.
文摘A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province.The Long-tan Formation contains abundant basalt,tuff and siliceous rocks.All rocks of the Longtan Formation are enriched in gold,which were deposited in a limited platform environment in the transition zone from marine to continental.The process of sedimentation was accompanied by the eruption of Emeishan basalt and hydrothermal deposition controlled by co-sedimentary submarine deep faults in the west,which led to the formation of a peculiar gold-bearing formation with coal series strata.This formation controlled the occurrence of the Carlin-type gold deposits in southwestern Guizhou Province.In response to the remobilization of the Emei mantle plume during the Yanshanian period,As,Au and other ore-forming materials were continuously extracted by deeply circulating waters from the Emeishan basalt and coal seams,thereafter forming ore-forming hydrothermal solutions.When these elements were transported in the coal seams,large amounts of As,Au and other elements were enriched in pyrite within the coal seams,thus forming high-As coal and Carlin-type gold deposits in the Longtan Formation coal series strata.
基金supported jointly by the National Science and Technology Supporting Program(2006BAB01A13)the Supporting-Guizhou Engineering Projectthe Autonomous Research Project of the State Key Lab. of Ore Deposit Geochemistry,CAS
文摘Geochemical studies of the Paiting and Miaolong Carlin-type gold deposits in the Sandu-Danzhai metal-logenic zone,Guizhou Province,have shown that the mineralized-altered rocks show LREE-enrichment patterns,generally displaying negative Eu anomalies(δEu=0.51?0.97) and unobvious negative Ce anomalies(δCe=0.86?0.99).Calcite and fluorite in relation with metallogenesis show MREE-enrichment patterns,generally displaying rather weak negative Eu anomalies(δEu=0.74?0.93) and weak negative Ce(δCe=0.70?0.98) anomalies.The δ13CPDB values of carbon in calcite are-1.61‰?-5.82‰,the δ18OSMOW values of oxygen are 13.97‰?19.24‰,and the δ34SCDT values of sulfur in stibnite are 17.72‰?21.68‰.In regard to δD and δ18O,ore-forming fluids pos-sess the characteristics of metamorphic water.The process of metallogenesis of the Carlin-type gold deposits is con-trolled by the Yanshanian tectonic activities.The Yanshanian movement promoted the migration and mobilization of metamorphic fluids in the extensively developed medium-to high-grade metamorphic rocks in this region,carrying primarily enriched gold and associated elements such as Hg,As,and Sb in the Sinian metamorphosed black shales and Lower Cambrian black shales.The ore-forming fluids found their way into a suitable metallogenic environment along the fault zone,followed by gold precipitation to form gold deposits.
基金supported by the National Key R&D Program of Deeppenetrating Geochemistry (2016YFC0600607)Deep Mineral Resources Exploration and Exploitation (2017YFC0601500)+1 种基金the Geological Research Project of Bureau of Geology and Mineral Exploration and Development Guizhou Province (Qian Di Kuang Ke He (2017) No. 10)the National Science Foundation of China (Nos. 41802027, 41802088)
文摘The newly discovered Baogudi gold district is located in the southwestern Guizhou Province,China,where there are numerous Carlin-type gold deposits.To better understand the geological and geochemical characteristics of the Baogudi gold district,we carried out petrographic observations,elemental analyses,and fluid inclusion and isotopic composition studies.We also compared the results with those of typical Carlin-type gold deposits in southwestern Guizhou.Three mineralization stages,namely,the sedimentation diagenesis,hydrothermal(main-ore and late-ore substages),and supergene stages,were identified based on field and petrographic observations.The main-ore and late-ore stages correspond to Au and Sb mineralization,respectively,which are similar to typical Carlin-type mineralization.The mass transfer associated with alteration and mineralization shows that a significant amount of Au,As,Sb,Hg,Tl,Mo,and S were added to mineralized rocks during the main-ore stage.Remarkably,arsenic,Sb,and S were added to the mineralized rocks during the late-ore stage.Element migration indicates that the sulfidation process was responsible for ore formation.Four types of fluid inclusions were identified in ore-related quartz and fluorite.The main-ore stage fluids are characterized by an H2O–NaCl–CO2–CH4±N2system,with medium to low temperatures(180–260℃)and low salinity(0–9.08%NaCl equivalent).The late-ore stage fluids featured H2O–NaCl±CO2±CH4,with low temperature(120–200℃)and low salinity(0–7.48%Na Cl equivalent).The temperature,salinity,and CO2and CH4concentrations of ore-forming fluids decreased from the main-ore stage to the late-ore stage.The calculated δ^13C,d D,and δ^18O values of the ore-forming fluids range from-14.3 to-7.0%,-76 to-55.7%,and 4.5–15.0%,respectively.Late-ore-stage stibnite had δ^34S values ranging from-0.6 to 1.9%.These stable isotopic compositions indicate that the ore-forming fluids originated mainly from deep magmatic hydrothermal fluids,with minor contributions from strata.Collectively,the Baogudi metallogenic district has geological and geochemical characteristics that are typical of Carlin-type gold deposits in southwest Guizhou.It is likely that the Baogudi gold district,together with other Carlin-type gold deposits in southwestern Guizhou,was formed in response to a single widespread metallogenic event.
文摘Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.
文摘Fluid inclusions in quartz from the Lannigou and Yata Carlin\|type gold deposits in southwestern Guizhou were analyzed by inductively coupled plasma\|mass spectrometry for their trace elements (Co, Ni, Cu, Pb, Zn, Pt, etc.). The results show that quartz fluid inclusions entrapped at different ore\|forming stages contain higher Co, Ni, Cu, Pb and Zn. It has been found for the first time that the ore\|forming fluids responsible for the Carlin\|type gold deposits are rich in Pt. From this it can be concluded that basic volcanic rocks seem to be one of the important sources of ore\|forming materials for the Carlin\|type gold deposits.
文摘The sediment hosted disseminated gold deposits in the Qinling region are of sedimentation slight metamorphic origin superimposed by hydrothermal reworking at moderate low temperatures and are well comparable with the typical Carlin gold deposits in the United States. In view of the confusing concept concerning the \!sediment hosted" and \!Carlin type" gold deposits, the authors propose that the term \!sediment hosted gold deposit" should be used in a broad sense which encompasses at least the four subtypes, i.e., the Carlin type, the metamorphic fine clastic type, the hydrothermal sedimentary type and the vein type. In other words, the \!Carlin type" should not be used as a synonym for \!sediment hosted" but is recommended as a subtype under the general category of \!sediment hosted gold deposits".